
70
r...

exl
t

.e,,
-z

_l.ld

_ Z ,,,,

_=

,= Z t,,-

--=- _: C:

|

Z

t

-4_1

_z
-- V

Z

tl

p,,-N
U_
CO
00

_J

_uJ
Z_

_J

0
_u o.

NASA Con_actor Report 189629

ICASE INTERIM REPORT 21

m

VIENNA FORTRAN - A LANGUAGE SPECIFICATION
VERSION 1.1

Hans Zima

Peter Brezany

Barbara Chapman

Piyush Mehrotra
Andreas Schwald

NASA Contract No-.-NAS 1-18605

March I992

.... :_-

IN_TUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

--m NASA Langley Research Center.Hampton, Virginia 23665

-_,_

-- rsitiesSpac R h A-- Operated by the Unive e esearc ssociation

Nalional Aeronautics and
Space Adminislralion

Lnngley Research Center
Hampton, Virginia 23665-5225

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, for

teclmical reviews or position statements, for bibliographies, and for COml)Ulcr

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

M. Y. Hussaini

Chief Scientist/Acting Director

VIENNA

Hans Zima"

FORTRAN- A LANGUAGE SPECIFICATION*

VERSION 1.1

Peter Brezany a Barbara Chapman a

Andreas Schwald _

Piyush Mehrotra b

aDepartment of Statistics and Computer Science,

University of Vienna, Briinner Strasse 72, A-1210 VIENNA AUSTRIA

blCASE, MS 132C, NASA Langley Research Center, Hampton VA. 23665 USA

Abstract

This document presents the syntax and semantics of Vienna Fortran, a machine-independent language

extension to FORTRAN 77, which allows the user to write programs fordistributed-memory systems using

global addresses. Vienna Fortran includes high-levelfeatures for specifyingvirtual processor structures,

distributingdata across setsof processors,dynamically modifying distributions,and formulating explic-

itlyparallelloops. The language is based upon the Single-Program-Multiple-Data (SPMD) paradigm,

which exploits the parallelisminherent in many scientificcodes. A substantial subset of the language

featureshas already been implemented.

Keywords: distributed-memory multiprocessor systems, numerical computation, data parallel algo-

rithms, data distribution, alignment, parallel loops, concurrent input/output

*The work described in this paper is being carried out as part of the research project "Virtual Shared Memory for Multi-

processor Systems with Distributed Memory" funded by the Austrian Research Foundation (FWF) under the grant number
P7576-TEC and the ESPRIT Project "An Automatic Parallellzatlon System for Genesis", funded by the Austrian Ministry

for Science and Research (BMWF). This research was also supported by the National Aeronautics and Space Administration
under NASA contract NAS1-18605 while the authors were in residence at ICASE, Mall Stop 132C, NASA Langley Research

Center, Hampton, VA 23665. The authors assume all responsibility for the contents of the paper.

°,.

111

PRECEDING PAGE BLANK NOT FILMED

Contents

Introduction 4

1.1 The Language Features 5

1.2 Implementation Status .. 9
1.3 Related Work ... 10

The

2.1

2.2

2.3
2.4

Model 12

The Data Space of a Program 12
Processors ... 13

Distributions ... 13

Alignment ... 15

3 Basic Language Specification 16
3.1 Introduction 16

3.1.1 Syntax Metalanguage 16
3.1.2 Basic Elements .. 17

3.2 Processor Declarations .. 20

3.2.1 Syntax ... 20
3.2.2 Semantics ... 20

3.3 Processor References ... 22

3.3.1 Syntax ... 22

3.3.2 Semantics ... 22

3.4 Distribution Expressions 23

3.4.1 Syntax ... 23
3.4.2 Overview ... 24

3,4,3 Basic Intrinsic Distribution Functions 25

3.4,4 Distribution Extraction 27

3.4.5 Distribution Type Definitions 27

3.4.6 Composite Distributions 27

3.4.7 Evaluation of Distribution Expressions 29

3.5 Alignment Specifications 30

3.5.1 Syntax .. • 30
3.5.2 Introduction ... 30

3.5.3 Alignment Expressions 31

3.5.4 Functional Alignment • 32
3.6 Static Array Annotations 33

3.6.1 Syntax ... 33
3.6.2 Semantics _ 33

3.7 Dynamically Distributed Arrays : . . . 35

3.7.1 Syntax 35

3.7.2 Dynamic Array Annotations . 35
3.7.3 Distribute Statements 37

3.8 Control Constructs ... 38

3.8.1 Syntax • 38
3.8.2 Introduction ... 39

3.8.3 The DCASE Construct 39
3.8.4 The 1F Construct 42

3.9 Allocatable Arrays 43

3.9.1 Syntax ... r • • • 43
3.9.2 Semantics ... 43

PRECEDING PAGE B_./U_ NOT FILMED

3.10 Procedures .. 44

3.10.1 Syntax ... 44
3.10.2 Semantics ... 44

3.11 Common Blocks ... 49

4 FORALL Loops 51

4.1 Syntax ... 51
4.2 Semantics ... 51

4.3 Work Distribution .. 53

4.4 Reduction Operators ... 54

5 Specification of Distribution and Alignment Functions 56

5.1 Specification of Distribution Functions 56
5.1.1 Syntax ... 56
5.1.2 Semantics ... 56

5.1.3 Examples ... 58

5.2 Specification of Alignment Functions 61

5.2.1 Syntax ... 01
5.2.2 Semantics ... 61

6 Concurrent Input/Output Statements 63

6.1 Syntax ... 63
6.2 Semantics ... 63

A Examples 70
A.1 Gaussian Elimination ... 70

A.2 ADI Iteration ... 73

A.3 Sweep over an Unstructured Mesh 75

B- Intrinsic Fu,lctions 77

B.1 ALL 77

B.2 ALLOCATED .. 77

B.3 ANY .. 77
B.4 BLOCK 77

B.5 B_BLOCK ... 77
B.6 CYCLIC .. 78

B.7 CYCLIC.LEN .. 78

B.8 DISTRIBUTED ... 78

B.9 DYNAMIC .. 78

B.10 IDT .. 78

B. 11 IDTA ... 79

B.12 INDIRECT .. 79

B.13 LBOUND ... 79
=B.14 OWNED .. 79

B.15 OWNER .. 79

B.16 SIZE .. 79

B.17 S_BLOCK ... 80

B.18 UBOUND ... 80

B.19 SMY_PROC _ 80
'B.20$NP : :. . : : : . :._. : :. : : : : : : : : : . :. : :. .. . , • . '_. : : . ._:_. • . 80

C Syntax
C.1

C.2

C.3

C.4

C.5
C.6

C.7

C.8
C.9

C.10

C.11

C.12

C.13
C.14

C.15

81

Syntax Metalanguage .. 81
Basic Elements .. 81

Processor Declarations .. 82

Processor References ... 82

Distribution Expressions 82

Alignment Specifications 82
Static Array Annotations 83

Dynamically Distributed Arrays 83
Control Constructs .. 83

Allocatable Arrays .. 84
Procedures .. 84

FORALL Loops .. 84

Specification of Distribution Functions 85

Specification of Alignment Functions 85
Concurrent Input/Output Statements 85

1 Introduction

In recent years, distributed-memory multiprocessing systems have gained an increasing share of the high

performance computer market. These architectures are relatively inexpensive to build, and are potentially
scalable to very large numbers of processors. They may well prove to be the tools with which the Grand

Challenges of Computational Science can be successfully attacked.

The most important single difference between distributed memory systems and other computer archi-
tectures is the fact that the memory is physically distributed among the processors; the time required to

access a non-local datum may be an order of magnitude higher than the time taken to access locally stored

data. This has important consequences for program efficiency. In particular, the management of data, with

the twin goals of both spreading the computational workload and minimizing the communication delays,
becomes of paramount importance.

A major difficulty with the current generation of these systems is that they generally lack programming

tools for software development at a suitably high level. The user is forced to deal with all aspects of the

distribution of data and work to the processors, and must control the program's execution at a very low

level. This results in a programming style which can be likened to assembly programming on a sequential

machine in many aspects. It is tedious, time-consuming and error prone. It has led to particularly slow
software development cycles and, in consequence, high costs for software.

Thus much research activity is now concentrated on providing suitable programming tools for these
architectures. One focus is on the provision of appropriate high-level language constructs to enable users

to design programs in much the same way as they are accustomed to on a sequeutial machine. Several

proposals (including ours) have been put forth in recent months for a set of language extensions to achieve

this [8, 12, 22, 30], in particular (but not only) for Fortran, and current compiler research is aimed at
implementing them.

A notation for specifying data distributions was developed and used in the SUPERB project to parallelize

FORTI_AN 77 code [42]. Early research on language extensions for distributing data was performed by
Mehrotra [25], Callahan and Kennedy [5], Kennedy and Zima [16] and Zima et al. [43]. The issues of

data distribution and data movement were analyzed within the framework of the Crystal programming
language [9].

Research in compiler technology has so far resulted in the development of a number of prototype systems

which are able to convert programs written using global data references to code for distributed memory

systems. These include SUPERB [13, 42], Kali [18, 17], and the MIMDizer [27]. These systems require
the user to specify the distribution of the program's datal The data distribution is then used to guide the

process of restructuring the code into an SPMD (Single Program Multiple Data) program for execution on the

target distributed memory multiprocessor. The compiler analyzes the source code, translating global data

references into local and non-local references based on the distributions specified by the user. The non-local

references are satisfied by inserting appropriate message-passing statements in the generated code. Finally,

the communication is optimized where possible, in particular by combining statements and by sending data
at the earliest possible point in time.

This document presents the complete syntax and semantics of Vienna Fortran, a machine-independent
language extension to FOaTRAN 77, which allows the user to write programs for distributed memory systems

using global addresses. The Vienna Fortran language extension to Fortran 90 is described in a separate

paper [4]; its specification is under development. Since the performance of an SPMD program is profoundly
influenced by the distribution of its data, most of the extensions are introduced to permit explicit control of

this by the user. A parallel loop is provided, as are means to distribute the work in this loop. Vienna Fortran

provides the flexibility and expressiveness needed to permit the specification of parallel algorithms and to

carry out the complex task of optimization. Despite this fact, there are relatively few language extensions
and a simple algorithm can be parallelized by the addition of just a few constructs which distribute the
program's data across the machines.

In the rest of this section, we give a brief overview of the language elements, in a form which is of necessity
incomplete. This should also serve as an introduction to the language for those who do not wish to study

thespecificationdetails1. Wethendiscusstheimplementationofthelanguagefeaturesandlookat related

work. The remainder of the document is devoted to the language extensions, whose syntax and semantics

are developed with a few examples.

Section 2 introduces the basic model for data distribution underlying Vienna Fortran. Section 3, which
forms the bulk of this document, then introduces the basic language. This includes specifying and referring to

processors, the various methods provided for distributing data, a discussion of dynamic distribution, the use

of allocatable arrays, the transfer of distributed arrays across procedure boundaries, and handling of common

blocks. The discussion of each topic begins with the corresponding syntax, followed by the semantic rules

and restrictions, together with some examples of constructs illustrating the syntax and their interpretation.
Section 4 which follows introduces an explicitly parallel loop; Section 5 then provides the framework by

which a user may construct his or her own distribution and alignment functions. The extensions for reading

and writing distributed files are defined in Section 6. Appendix A provides several example codes written

in Vienna Fortran, Appendix B lists the intrinsic functions provided for the user in the language extensions,

and finally, Appendix C reproduces the entire syntax of the preceding sections.

1.1 The Language Features

The Vienna Fortran language extensions provide the user with the following features:

• The processors which execute the program may be explicitly specified and referred to. It is possible

to impose one or more structures on them.

• The distributions of arrays can be specified using annotations. These annotations may use processor
structures introduced by the user.

- Intrinsic functions are provided to specify the most common distributions.

- Distributions may be defined indirectly via a map array.

- Data may be replicated to all or a subset of processors.

- The user may define new distribution functions.

• An array may be aligned with another array, providing an implicit distribution. Alignment functions

may also be defined by the user.

• The distribution of arrays may be changed dynamically. However, a clear distinction is made between

arrays which are statically distributed and those whose distribution may be changed at runtime.

• In procedures, dummy array arguments may

- inherit the distribution of the actual argument, or

- be explicitly distributed, possibly causing some data motion.

• A forall loop permits explicitly parallel loops to be written. Intrinsic reduction operations are provided,

and others may be defined by the user. Loop iterations may be executed

- on a specified processor,

- where a particular data object is stored, or

- as determined by the compiler.

• Arrays in common blocks may be distributed.

1The reader is also referred to the examples in Appendix A and in [6, 7']which demonstrate the capabilities of the language
features.

• Allocatable arrays may be used in much the same way as in Fortran 90. Array sections are permitted
as actual arguments to procedures.

• Assertions about relationships between objects of the program may be inserted into the program.

We will in the following illustrate some of these features in more detail, using a set of simple code frag-

ments. We use terminology and concepts from the definition of FORTRAN 77 (and, occasionally, Fortran 90)
freely throughout.

The PROCESSORS statement The user may declare and name one or more processor arrays by

means of the PROCESSORS statement. The first such array is called the primary processor array; others

are declared using the keyword RESHAPE. They refer to precisely the same set of processors, providing
different views of it: a correspondence is established between any two processor arrays by column-major

ordering of array elements as followed in FORTRAN 77. Expressions for the bounds of processor arrays may

contain symbolic names, whose values are obt.ained from the environment at load time. Assertions may be

used to impose restrictions on the values that can be assumed by these variables. This allows the program

to be parameterized by the number of processors. This statement is optional in each program unit. For

example:

PROCESSORS MYP3(NP1, NP2, NP3) RESHAPE MYP2(NP1, NP2*NP3)

Processor References Processor arrays may be referred to in their entirety by specifying the name only.
Array section notation, as introduced in Fortran 90, is used to describe subsets of processor arrays; individual

processors may be referenced by the usual array subscript notation. Dimensions of a processor array may
be permuted.

Processor Intrinsics The number of processors on which the program executes may be accessed by the

intrinsic function SNP. A one dimensional processor array, SP(I: SNP), is always implicitly declared and

may be referred to. This is the default primary array if the processor statement is left out of a program unit.
The index of an executing processor in SP is returned by the intrinsic function SMY_.PROC.

Distribution Annotations Distribution annotations may be appended to array declarations to specify

direct and implicit distributions of the arrays to processors. Direct distributions consist of the keyword DIST

together with a parenthesized distribution ezpression, and an optional TO clause. The TO clause specifies

the set of processors to which the array(s) are distributed; if it is not present, the primary processor array
is selected by default. A distribution expression consists of a list of distribution functions. There is either

one function to describe the distribution of the entire array, which may have more than one dimension, or

each function in the list distributes the corresponding array dimension to a dimension of the processor array.
The elision symbol ":" is provided to indicate that an array dimension is not distributed. If there are fewer

distributed dimensions in the data array than there are in the processor array, the array will be replicated

to the remaining processor dimensions. Both intrinsic functions and user-defined functions may be used to
specify the distribution of an array dimension.

REAL A(L,N,M), B(M,M,M) DIST (BLOCK, CYCLIC, BLOCK)
REAL C(1200) DIST(MYOWNFUNC) TO SP

The BLOCK intrinsic function distributes an array dimension to a processor dimension in evenly sized
segments. The CYCLIC (or scatter) distribution maps elements of a dimension of the data array in a

round-robin fashion to a dimension of the processor array. If a width is specified, then contiguous segments
of that width are distributed in a round-robin manner.

A furtheroption,knownasindirect distribution,is to applythe intrinsicfunctionINDIRECT to a

mapping array, C. Let A denote the array to be distributed: for each index tuple i, the element A(i) is

mapped to the processor whose number is given by the value of C(i). This feature is useful in situations

where the data structures of a program, and the associated access patterns, depend on input values and are
determined at run time.

Another way to specify a distribution is to prescribe that the same distribution function be employed as

that which was used to distribute a dimension of another array. For example,

REAL D(100,100) DIST(=A.1,-A.3) TO MYP2

will distribute D by BLOCK in both dimensions to the processor array MYP2. "A.I" refers to dimension 1

of array A while "=A.I" extracts the distribution of the first dimension of the array A. Note that both the

extents of the array dimensions being distributed and the set of processors may differ from those of A.

Implicit distributions begin with the keyword ALIGN and require both the target array and a source

array (so called because it is the source of the distribution). An element of the target array is distributed
to the same processor as the specified element of the source array, which is determined by evaluating the

expressions in the source array description for each valid subscript of the target array. Here, H and JJ are

bound variables in the annotation, and range in value from 1 through 80.

INTEGER IM(80,80) ALIGN IM(II,JJ) WITH D(JJ,II+10)

As is the case with direct distributions, the user may define functions to describe more complex alignments.

By default, an array which is not explicitly distributed is replicated to all processors.

Dynamic Distributions and the DISTRIBUTE Statement By default, the distribution of an array

is static. Thus it does not change within the scope of the declaration to which the distribution has been
appended. The keyword DYNAMIC is provided to declare an array distribution to be dynamic. This

permits the array to be the target of a DISTRIBUTE statement. A dynamically distributed array may

optionally be provided with an initial distribution in the manner described above for static distributions.

A range of permissible distributions may be specified when the array is declared by giving the keyword

RANGE and a set of explicit distributions. If this does not appear, the array may take on any permitted

distribution with the appropriate dimensionality during execution of the program. Finally, the distribution

of such an array may be dynamically connected to the distribution of another dynamically distributed array

in a specified fixed manner. This is expressed by means of the CONNECT keyword. Thus, if the latter
array is redistributed, then the connected array will automatically also be redistributed.

REAL F(200,200) DYNAMIC, RANGE ((BLOCK, BLOCK), (CYCLIC(5), BLOCK))

An explicit distribution of an array is specified in a statement provided for this purpose. It begins with

the keyword DISTRIBUTE and a list of the arrays which are to be distributed. Following the separator

symbol "::", a direct, implicit or indirect distribution is specified using the same constructs as those for

specifying static distributions.

DISTRIBUTE A,B :: (CYCLIC(IO))

Distribution Queries and The DCASE Construct The DCASE construct enables the selection of a

block of statements for execution depending on the actual distribution of one or more arrays. It is modeled

after the CASE construct of Fortran 90. The keywords SELECT DCASE are followed by one or more

arrays whose distribution functions are queried. The individual cases begin with the keyword CASE together
with a distribution expression for each of the selected arrays. An asterisk, "*", matches any distribution.

7

Thefirst casewhichsatisfies the actual distributions of the selected arrays is chosen and its statements are

executed. No more than one case may be chosen.

SELECT DCASE (A, B)

CASE ((BLOCK),(BLOCK))

CALL BLOCKSUB(A,B,N,M)

CASE ((BLOCK),(CYCLIC))
*o,

CASE DEFAULT

END SELECT

The distributions of two arrays may be compared in a similar manner within an IF statement.

Allocatable Arrays An array may be declared with the allocatable attribute as introduced in Fortran 90

by supplying the keyword ALLOCATABLE. The declaration defines only the rank of the array; the

ALLOCATE statement is provided to allocate an instance of the array with specified bounds in each

dimension. This instance is deallocated by means of the DEALLOCATE statement. An allocatable array

may not be accessed if it is not currently allocated.

Common Blocks Common blocks in which no data is explicitly distributed may be used as in FORTRAN 77.

The common block storage sequence is defined for them. Individual arrays which occur in a named common

block may also be explicitly and individually distributed just as other arrays are. However, they may not be

allocatable and may not be dynamically distributed. Once storage space has been determined for a named

common block, then it may not change during program execution.

Procedures Dummy array arguments may be distributed in the same way as other arrays. If the dis-

tribution given differs from that of the actual argument, then redistribution will take place. If the actual

argument is dynamically distributed, then it may be permanently modified in a procedure; if it is statically
distributed, then the original distribution must be restored on procedure exit. This can always be enforced

by the keyword RESTORE. While argument transmission is generally call by reference, there are situations
in which arguments must copied. The user can suppress this by specifying a NOCOPY.

Dummy array arguments may also inherit the distribution of the actual argument: this is specified by

using an "*" as the distribution expression:

CALL EX(A,B(I:N,10),N,3)

SUBROUTINE EX(X,Y,N,J)

REAL X(N,N) DIST(*)

REAL Y(N) DIST(BLOCK) TO MYP2(I:N,J)

Array sections may be passed as arguments to subroutines using the syntax of Fortran 90.

The FORALL Loop The FORALL loop enables the user to assert that the iterations of a loop are
independent and can be executed in parallel. A precondition for the correctness of this loop is that a value

written in one iteration is neither read nor written in any other iteration. There is an implicit synchronization

at the beginning and end of such a loop. Private variables are permitted within forall loops; they are known

only in the forall loop in which they are declared and each loop iteration has its own copy. The iterations

of the loop may be assigned explicitly to processors if the user desires, or they may be performed by the
processor which owns a specified datum. Only tightly nested forall loops are permitted.

8

FORALLI = 1,NPI*NP2*NP3ON $P (NOP(I))
INTEGER K

END FORALL

A reduction statement may be used within forall loops to perform such operations as global sums;

the user may also define reduction functions for operations which are commutative and associative in the

mathematical sense.

Input/Output Files read/written by parallel programs may be stored in a distributed manner or on a

single storage device. We provide a separate set of I/O operations to enable individual processor access to
data stored across several devices.

1.2 Implementation Status

The Vienna Fortran Compilation System is currently being developed at the University of Vienna. It is

based upon previous work performed by several groups, but, in particular, upon the experience gained with

the parallelization system SUPERB ([42]). It currently generates code for the Intel iPSC/860, the GENESIS

architecture, and SUPRENUM.
The implementation of a substantial subset of Vienna Fortran has already been completed. This includes

• Static array distributions

• Arbitrary rectilinear block distributions

• Inherited distributions for dummy array arguments

• Forall loops

Special consideration has been given to optimizing the generated code.

analysis and optimization methods have been implemented:

In particular, the following

Interprocedural communication analysis

Communication optimization: matching access patterns to aggregate communication routines, elimi-

nation of redundant communication, fusion of communication statements

Interprocedural dynamic distribution analysis

• Interprocedural distribution propagation

• Procedure Cloning

• Optimization of parallel loop scheduling

• Optimization of irregular access patterns, based on the PARTI routines (cf. [36]).

This compilation system is a full implementation of FORTRAN 77. Among other things, it permits the user
to distribute work arrays, sections of which may be individually distributed; it also handles equivalencing.

It performs extensive data dependence analysis and interprocedural analysis to determine the correctness of

all transformations applied to the program code.

Implementation of further features of Vienna Fortran, in particular the dynamic distributions, is under
way. There is still an amount of research to be done in this area, including methods for the efficient handling

of user defined distribution and alignment functions.

1,3 Related Work

Wediscusssomeof therelatedresearchinbothlanguagedevelopmentforparallelmachinesandcompilation
techniquesbrieflybelow.

A numberofparallelprogramminglanguageshavebeenproposed,bothforuseonspecificmachinesand
asgenerallanguagessupportingsomemeasureofportability(e.g.OCCAM[31]).Languagesforcoordinating
individualthreadsof a parallelprogram,suchasLINDA [1] and STRAND [11], have been introduced to
enable functional parallelism. Most manufacturers have extended sequential languages, such as Fortran and

C, with library routines to manage processes and communication. In most explicitly parallel languages, the
user performs many of the tasks which a compiler is expected to handle for a Vienna Fortran program.

The concept of defining processor arrays and distributing data to them was first introduced in the

programming language BLAZE [19] in the context of shared memory systems with non-uniform access times.

This research was continued in the Kali programming language [26] for distributed memory machines, which
requires that the user specify data distributions in much the same way that Vienna Fortran does. It permits

both standard and user-defined distributions; a forall statement allows explicit user specification of parallel

loops. The design of Kali has greatly influenced the development of Vienna Fortran.

Other languages have taken a similar approach: the language DINO [34, 35], for example, requires the user

to specify a distribution of data to an environment, several of which may be mapped to one processor. The

programmer does not specify communication explicitly, but must mark non-local accesses. In Booster [28, 29],
data distributions are specified separately from the algorithm in an annofafion module; a distinction is made

between work and data partitions.

More recently, the Yale Extensions, currently being developed by Chen et al. [8], specify the distribution

of arrays in three stages: alignment, partition and a physical map. Because all these stages are modeled

as bijective functions between index domains, data replication is not possible. By restricting the scope of

layout directives to phases, a block structure is imposed on Fortran 90.
The programming language Fortran D [12], under development at Rice University, proposes a Fortran

language extension in which the programmer specifies the distribution of data by aligning each array to a

virtual array, known as a decomposition, and then specifying a distribution of the decomposition to a virtual

machine. These are executable statements, and array distributions are dynamic only. While the general use

of alignment enables simple specification of some of the relationships between items of program data, we
believe that it is often simpler and more natural to specify a direct mapping. We further believe that many

problems will require more complete control over the way in which data elements are mapped to processors at

run time. Fortran90D [41], proposed by researchers--at Syracuse University, is based upon CM Fortran [38].

Digital Equipment Corporation has proposed language extensions [22] for data distribution conformant
with both FORTRAN 77 and Fortran 90. These include directives for statically aligning data with decom-

positions. They are specified when the array is declared. The user may explicitly distribute dummy array

arguments; if the distribution differs from that of the actual argument, redistribution occurs. The origi-

nal distribution is restored at subroutine exit. It is assumed that the compiler will implement a default

distribution for those arrays which are not explicitly distributed by the user. A forall statement is provided.

Cray Research Inc. has announced a set of language extensions to Cray Fortran (cf77) [30] which enable
the user to specify the distribution of data and work. They provide intrinsics for data distribution and permit

redistribution at subroutine bounds. Further, they permit the user to structure the executing processors by

giving them a shape and weighting the dimensions. Several methods for distributing iterations of loops are

provided.

The Cray programming model assumes that initial execution is sequential and the user specifies the start

and end of parallel execution explicitly. Many of the features of shared memory parallel languages have been

retained: these include critical sections, events and locks. New instructions for node I/O are provided. In

addition, there are a number of intrinsic functions to access parts of arrays local to a processor, and reduction

and parallel prefix operations are included.

The implementation of Vienna Fortran and similar languages requires a particularly sophisticated com-

pilation system, which not only performs standard program analysis but also, in particular, analyzes the

10

program'sdatadependences[44].In general,a numberof codetransformationsmustbeperformedif the
targetcodeis to be efficient. The compiler must, in particular, insert all messages - optimizing their size

and their position wherever possible.

The compilation system SUPERB (University of Vienna) [42] takes, in addition to a sequential Fortran

program, a specification of the desired data distribution and converts the code to an equivalent program

to run on a distributed memory machine, inserting the communication required and optimizing it where
possible. The user is able to specify arbitrary block distributions. It can handle much of the functionality

of Vienna Fortran with respect to static arrays.

The Kali compiler [18] was the first system to support both regular and irregular computations, using

an inspector/executor strategy to handle indirectly distributed data. It produces code which is independent
of the number of processors.

The MIMDizer [27] and ASPAR [15] (within the Express system) are two commercial systems which
support the task of generating parallel code. The MIMDizer incorporates a good deal of program analysis, and

permits the user to interactively select block and cyclic distributions for array dimensions. ASPAR performs

relatively little analysis, and instead employs pattern-matching techniques to detect common stencils in the

code, from which communications are generated.

Pandore [2] takes a C program annotated with a user-declared virtual machine and data distributions to

produce code containing explicit communication. Compilers for several functional languages annotated with

data distributions (Id Nouveau [33], Crystal [21]) have also been developed which are targeted to distributed

memory machines.

Quinn and Hatcher [14], and Reeves et al. [10, 32] compile languages based on SIMD semantics. These

attempt to minimize the interprocessor synchronizations inherent in SIMD execution. The AL compiler [39],

targeted to one-dimensional systolic arrays, distributes only one dimension of the arrays. Based on the one

dimensional distribution, this compiler allocates the iterations to the cells of the systolic array in a way that
minimizes inter-cell communications.

The PARTI primitives, a set of run time library routines to handle irregular computations, have been

developed by Saltz and coworkers [36, 37]. These primitives have been integrated into a compiler and are

also being implemented in the context of the FORTRAN D Programming environment being developed at

Rice University. Similar strategies to preprocess DO loops at runtime to extract the communication pattern

have also been developed within the context of the Kali language by Koelbel and Mehrotra [18, 20]. Explicit
run-time generation of messages is also considered by [10, 21, 33], however, these do not save the extracted

communication pattern to avoid recalculation.

II

2 The Model

2.1 The Data Space of a Program

Definition 1 The data space of a program is the set of data objects declared in the program. It is denoted

by A. .,4 contains two classes of objects: scalars and arrays.t:]

A scalar object has a rank of 0. Arrays designate structured sets of scalars. They are characterized by
an allocation status and have a rank > 1, as defined below:

Definition 2 Array Allocation

1. With respect to their storage allocation, arrays are classified into two groups:

* A statically allocated array is allocated according to FOttTRAN 77 conventions. The allocation

instance of such an array is defined to be the interval of time in which storage is allocated for
the array during program execution.

* Dynamically allocated arrays can be allocated and deallocated by explicit statements ALLO-

CATE and DEALLOCATE. The execution of ALLOCATE results in storage allocation for the
array; DEALLOCATE releases the storage occupied by the last ALLOCATE statement executed

for the array. The time interval between the execution of an ALLOCATE statement and the

subsequent DEALLOCATE is called an allocation instance of the array. Between any two AL-

LOCATE statements applied to an array a DEALLOCATE must be executed; i.e., there is no
nesting of allocations.

2. The allocation status of an array at a given time is allocated iff execution at that time is within
an allocation instance for that array, otherwise it is dealloeated.

Definition 3 Index Domains

1. An index domain of rank (dimension) n is any set I that can be represented in the form I=

xn=lDi, where n > 1 and for all i, 1 < i <_ n, Di is a nonempty, linearly ordered set of integer

numbers. I is called a standard index domain iff each Di is of the form Di = fit : tti], where li < ui
and [li : ui] denotes the sequence of numbers (li,li + 1,..., ui). li and ui are then respectively called
the lower and upper bound of dimension i.

In the following, let I denote an index domain of rank n, and i an integer number with 1 < i < n.

2. The projection eli to its i-th component, Di, is denoted by Ii.

3.] Di I is the extent of dimension i.

4. The shape eli is defined by shape(I) := (I D1 I,..., 1Dn]).

Definition 4 Array index domains

Assume that A E .4 is an arbitrary declared array.

1. If the allocation status of A is allocated, then:

(a) A is associated with a standard index domain, Ia. All attributes eli a , such as rank and shape,
are applied to A with the same meaning as specified in Definition 3. 2

(b) C A is the set of elements erA. The elements are scalar objects.

(c) index A : CA ---* I a is a function establishing a one-to-one correspondence between CA and I A. For

every array element e E _a, indexa(e) is called the index 0re.

ZWhenever A is implied by the context, the superscript may be omitted. Analogous conventions hold for all similar cases.

12

2. If the allocation status of A is deallocated, then only the rank of A is known. Neither an index

domain nor a set of elements is associated with A.

Definition 5 Consider an arbitrary point t in time during the execution of the program. Then:

g:= {e I e E gA for some A E ,4 such that the allocation status of A is allocated.}

£ is called the set of all array elements in the data space at time t.D

The bounds, extents, and sizes of allocated arrays can be accessed in the program by the intrinsic functions

LBOUND, UBOUND, and SIZE.
Until now we have discussed arrays in the data space, which are introduced by an array declaration.

Arrays may also be computed at run time by forming a section of a declared array. Such arrays can be
characterized in the same way as allocated arrays in the above definition; their index domain, however, may

be nonstandard (see 3.1.2).

In the following, if nothing is said to the contrary, the allocation status of an array will always be assumed
to be allocated.

2.2 Processors

The set of processors, P, is represented in a program by one or more processor arrays, which provide a

means of naming and accessing individual processors and subsets of processors. We will use the notational
conventions introduced for arrays above; in particular, for a processor array R, I R denotes the associated

standard index domain, and index R : P _ I R the function mapping processors to their index.

Any two processors in P communicate by exchanging messages. Our model abstracts from the machine

topology, such as grid, torus, or hypercube and the related message passing mechanisms, and thus does not

reflect different processor "distances".
Processor declarations and processor references will be discussed in Sections 3.2 and 3.3, respectively.

2.3 Distributions

A distribution of an allocated array maps each array element to one or more processors, which become the
owners of the element, and, in this capacity, store the element in their local memory. We model distributions

by functions between the associated index domains.

Definition 6 Index Mappings
Let I, J denote two index domains. An index mapping from I to J is a total function t : I --* 79(J) - {¢},

where 79(3) denotes the power set of J.

Definition 7 Distributions

1. Let A E A denote an allocated array, and assume that R is a processor array. An index mapping 6_

from I A to I R is called a distribution for A with respect to R.

P. Assume that 6_ is a distribution. Then _A is the associated element-based distribution that maps

elements of A to processors in P. It is defined as follows:

(a) tA : CA, p(p) _ {¢} is a total function.

(b) For each e e Ca: ta(e) = {p e P l indexn(p) _ 6A(indexa(e))}. ca

13

Notethat6A uniquely determines 6RA, and vice versa.

Until now, we have only considered distributions of individual arrays. By generalizing the functions _A

in such a way that they combine the distributions of all arrays in the data space we obtain a distribution

state as defined below. For most of this paper we will assume a fixed processor array R to be implicitly

given, and we thus omit R in the notation except where indicated otherwise.

Let t denote an arbitrary point in time during the execution of a program, and assume that A E A is an

allocated array. At time t, A may or may not be associated with a distribution. If it is, the distribution is
uniquely determined, if it is not, we say that the distribution of A at time t is undefined.

Definition 8 The distribution state at time t, _ : g ---*79(P) - {¢} is given as follows: For each e such
that e E CA:

• If A is associated with a distribution $A at time t, then $(e) := $_(e).

• If the distribution of A at time t is undefined, then $(e) is undefined.

Definition 9 Assume that a distribution state $ is given. Let the total function)_ : P --, P(£) be defined as

follows: For each p E P,)_(p) = {e E £ [p E $(e)}.)_(p) is the set of local variables of p; these variables

are also said to be owned by p. [:]

We finish this section with a few remarks.

in the context of distributions, we have not discussed scalars up to now. The specification and use of scalar
objects in Vienna Fortran may be exactly as in sequential programs, without any additional specification.

In this case, we assume replication by allocating space on each processor, thus avoiding all communication.

On the other hand, Vienna Fortran provides a means to explicitly specify the owner(s) of scalar objects (see

Section 3.6)).
We can easily include scalars into our model by considering them (for this purpose only) as arrays

with exactly one element. Such objects are always allocated and always have a well-defined distribution

associated with them. The concept of the element-based distribution, the meaning of the set £, and of the

distribution state at a given time must then be suitably extended. We will use this generalization in just a

few places in this document.

In much of our treatment of distributions in later sections of this document, we will deal with classes of

distributions rather than individual distributions. These classes will be called distribution types; they are

the result of certain abstractions which are related to the way distributions are expressed in the language

(see Section 3).
A distribution for an array determines for each processor which of the array elements are local to the

processor, and which are not. While access to local data items can be performed via normal memory

references, nonlocal objects can be read or written only via message passing, which, for most of today's

architectures, is a highly expensive operation. Thus, while the selection of a distribution does not affect the

correctness of a program, it plays a pivotal role for its run-time performance. The amount of communication

can be reduced if data objects are replicated, i.e., if they can be owned by two or more processors. This is

the reason why in our model distributions map an array index domain into the powerset of the processor

index domain, rather than simply into the processor index domain.

There are two ways in which allocated arrays can be associated with distributions. Any such association

is valid within the program unit in which the declaration of the array occurs:

• The distribution type of a statically distributed array is evaluated at the time its declaration is

evaluated. It is associated with all instances of the array.

• The distribution type of a dynamically distributed array may be different for different allocation

instances, and, moreover, may change within any given allocation instance. Such a change can be caused

by the execution of a distribute statement or by a procedure call. As long as no explicit association

between an array and a distribution is established in an allocation instance, the distribution of the

array remains undefined.

14

Arrayelementscanbelegallyaccessed (read or written) only if the program executes within an allocation
instance for that array and a well-defined distribution has been associated with the array.

2.4 Alignment

If A, B are different arrays used in a common context (for example, within one assignment statement),
then the relationship of 6A and 6B may determine the amount of communication to be generated. If these

functions are in an invariant relationship with each other during a certain phase of program execution, then

we say that A and B are aligned during that period. For example, if we know that I A : I B and 6A = 6B,

then no communication needs to be generated for the assignment A(I) = B(I) + 1, if it is executed in the

process which owns A(I) and B(I). We now describe this concept more precisely.

Definition 10 Let A,B E ,4 denote arbitrary arrays. An index mapping c_ from I A to I B is called an

alignment for target array A with respect to source array B. []

If A, B, 6B, and ot are given as above, then 6A can be computed as shown below:

Definition 11 Construction of a distribution

Let A, B E A, 6n and an alignment function a : I a --+ P(I P) - {¢} be given. Then we delermine 5A as

follows: For each i G IA :

6A(i):= Uj o¢i 6B(J)

[]

15

3 Basic Language Specification

3.1 Introduction

Section 3 defines the set of Fortran extensions that constitute the basic Vienna Fortran language.
include:

@

They

Assertions (Section 3.1.2)

Array sections (Section 3.1.2)

Processor declarations and references (Sections 3.2 and 3.3)

Static and dynamic array annotations (Sections 3.4, 3.5 and 3.6)

Dynamic distributions of arrays and their control (Section 3.7)

Allocatable arrays and the allocate and deallocate statements (Section 3.9)

Dummy array annotations and the mechanisms for transferring distributed arrays to procedures (Sec-

tion 3.10)

Common blocks (Section 3.11)

These topics will be discussed in individual subsections below,

In the remainder of this introduction we will specify the syntax metalanguage, describe a number of basic

concepts that will be used throughout the document, and give an informal introduction into the declaration
annotation syntax.

3.1.1 Syntax Metalanguage

The syntax of the language extensions is specified in a variation of Backus-Naur form (BNF). We use the

following conventions:

1. Nonterminal symbols are written as lower-case words (often hyphenated and abbreviated). Nonterminal

symbols of the FORTRAN 77 standard are written in italic and have the same meaning as in the standard

([3l).3

2. Keywords are written in boldface, for example REAL.

3. Strings of terminal symbols that are not keywords are enclosed in quotes: for example "(".

4. The following syntactic meta symbols are used ("xyz" stands for any legal syntactic class phrase):

• --* introduces a syntactic class definition

• I introduces a syntactic class alternative

• [] encloses an optional item

• 0 encloses an item which specifies a set of alternatives

• [xyz]... expresses repetition of xyz (0 or more times)

• xyz ... expresses repetition of xyz (1 or more times)

5. In order to minimize the number of syntax rules and to convey appropriate context information, the

following rules are assumed:

• xyz-list --* xyz ["," xyz]...

• xyz-name _ name

• integer-xyz --* xyz

3In some cases, the meaning may be extended to include constructs of the extension.

16

3.1.2 BasicElements

Syntax

1. assertion_ ASSERT "(" expression")"

2. array-section --* array_name ["("section-subscript-list")"]

3. section-subscript ---, subscript I subscript-triplet

4. subscript ---* integer_ezpr

5. subscript-triplet --* [subscript] ":" [subscript] [":" stride]

6. stride _ in_eger_ezpr

7. data-reference _ array_element_name I array-section

8. generalized-array-declarator ---* array_declarator I assumed-shape-array-declarator

9. assumed-shape-array-declarator ---* array_name "(" assumed-shape-spec-list ")"

10. assumed-shape-spec --_ [dim_bound_expr] ":"

11. declaration-annotation ---* actual-array-annotation I dummy-array-annotation

12. actual-array-annotation ---* static-array-annotation I dynamic-array-annotation

13. extension-executable-sLatement ---* distribute-statement I allocate-statement I deallocate-statement I

forall-loop I dcase-construct I concurrent-io-statement

This section describes a number of loosely related basic concepts of the language, which will be used

throughout the document.

Assertions

An assertion is specified in the form:

ASSERT (expr)

where ezpr isan logicalexpression.An assertioncan occur in any place ofthe program where a statement

isallowed.Itspecifiesa relationshipbetween objectsofthe program which the compiler can use to improve

code generation. An assertionthat specifiesa relationshipwhich isnot universallytrue may resultin a

compile-timeor run-time error.

Array Sections

Array sectionsare allowed as actualarguments in procedure calls,and can alsobe used to specifysets of

processors (see Section 3.3).
An array section represents an array.

If an array section consists only of an array_name, then it represents the whole array associated with this
name.

Otherwise, it has the form:

A(ssx,...,ss,)

17

whereA is an array name representing an array of rank n, and each ssj is a section-subscript. The number
of subscript-triplets, m, in tile array section must be at least 1. Let AS denote the array represented by the

array section. Then AS has rank m. It consists of all elements of A determined by all possible subscript lists

obtainable from the single subscripts or sequences of subscripts specified by each section subscript. This set

must be nonempty.

Let dl,..., dm denote the positions in which a subscript triplet occurs. Then I As C I_ for all j, l <
j < m. We explain now how the index domain of AS is constructed by specifying the sequence of subscript

values determined by a subscript triplet.

Consider a subscript triplet occurring in position dj of the section subscript list, and assume that IAj =
[L : U]. A subscript triplet has the form:

[s bl] : sty]

The default values are: sub1 = L, subs = U and str= 1. The stride sir must not be 0.

The subscript triplet determines a sequence of values in the following way:

* If str> 0, then sub1 < sub2 must hold. The sequence begins with subx and proceeds in increments of

str to the largest such integer not greater than sub2.

• If str < 0, then sub2 < sub1 must hold. The sequence begins with sub2 and proceeds in increments of
str to the smallest such integer not less than sub1.

Note that I AS is not necessarily a standard index domain, and that the order of elements within a dimension

of A may be reversed in AS. Furthermore, sub1 and sub2 need not be within the declared bounds of A if all

values used in selecting array elements are within the declared bounds.

Example 1 Array sections

Consider the declarations of A1 and A2, as given below:

REAL AI(100), A2(100,100)

The following are examples of array sections:

• A1 -- this designates the whole array A1

• Al(40 : 60) -- this specifies the one-dimensional subarray with elements Al(40), Al(41),..., Al(60).

* AI(90 : 102 : 5) -- this specifies the one-dimensional subarray containing the elements

A1 (90), A 1(95), Al(100).

• AI(100 : 1 : -1) -- this is A1, with its elements in reverse order.

• Al(50 : 50) -- this is the one-dimensional subarray containing the single element Al(50).

. A2(1 : 10,91 : 100) -- a two-dimensional section of A2, containing the elements

A2(I, 91), A2(2,91),..., A2(10,100).

* A2(I, :) -- the I-th row of A2: this is a one-dimensional section.

. A2(:, J) -- the J-th column of A2, a one-dimensional section.

• A2(:, :) -- equivalent to the whole array, A2.

[]

18

Data References

A data reference is either an array_element_name or an array-section. The concept will be used in the context

of data arrays and processor arrays.

Generalized Array Declarators

Generalized array declarators are either FORTRAN 77 array_declarators or assumed-shape-array-declarators.

They are used to specify processor arrays (Sections 3.2 and 3.10) and dummy arguments of user-specified

distribution and alignment functions (see Sections 5.1 and 5.2).

For array_declarators, standard FORTRAN 77 rules apply.

Consider now an assumed-shape-array-declarator.

A(specl,. .., spec,_)

Here, A is an array name, and each specl, 1 < i < n, is an assumed-shape-spec of the form

[lwbi] :

where lwbi is a dim_bound_expr. The context of an assumed shape array declarator always specifies a uniquely

determined actual argument array, B, of the same rank as A. The shape of A is defined so as to be equal

to the shape of B.
Let i be arbitrarily selected, and assume that the bounds of the actual argument array B in dimension i

are given as [l : u], and define the bounds to be associated with dimension i of A as l_ : u _ . The meaning of

an assumed shape spec is then defined as follows:

1. If the assumed shape spec is of the form Iwbi :, and c is the value oflwbi, then 11 := c and u _ := u+c-l.

2. If the assumed shape spec is of the form ":", then l' := 1 and u_ := u.

The bounds and extents associated with the index domain of A can be determined at run time by

referencing the intrinsic functions LBOUND, UBOUND, and SIZE (see Appendix B).

Example 2 Assume an actual argument array B(5 : 10, 11 : 20). The following constructs are legal assumed

shape array declarators, and have a meaning as explained below:

• A(:, :) specifies an array with bounds A(5: 10, 11: 20)

• A(1 :,:) specifies the bounds of A as A(1 : 6,11: 20)

The following constructs are illegal:

• A(N, :)

• A(:) (the rank of A must be 2). []

Declaration Annotations

Vienna Fortran allows annotations to be appended to array declarations. Such annotations specify the

method by which the arrays introduced in the declaration are to be distributed.
Declaration annotations include actual and dummy array annotations.

Actual array annotations are either static or dynamic. They characterize arrays as statically or dy-

namically distributed, and define attributes of their distributions. Dummy array annotations are associated

with dummy arguments of procedures.

19

Thedetailsof thesyntaxandsemanticsof declarationannotationswill bedefinedin laterpartsof this
section.Here,weinformally(andincompletely)outlinesomecharacteristicsof staticannotationstoprovide
thereaderwithsomeintuitionandhelphim to understandtheexamples.

Considera FORTRAN77arraydeclarationof the form4:

REAL adl,ad2,...,adr

where the adl, 1 < i < r, are array_declarators, specifying array identifiers and their associated index domains.

A static array annotation, appended to such a declaration, applies to all these arrays; as a consequence,

we need to consider only annotated declarations with exactly one array A. Such an annotation may have
the form

REAL A(il :ut,...,In :un) DIST (dez) TO pref

where dez is a distribution expression and pre/a processor reference. Any or all of the components

of an annotation may be omitted, but we defer the discussion of defaults to a later section (see Section 3.6).

The distribution expression dex specifies a distribution type, which, together with pref and I A determines
a distribution for A. For example, in the specification:

REAL B(N) DIST (BLOCK) TO R

the annotation contains the distribution expression (BLOCK) and a reference to a processor array R. This

specifies that B is to be partitioned into evenly-sized contiguous blocks, which are to be distributed to all of

the processors in R.

The next two subsections will discuss processor declarations (Section 3.2) and processor references (Sec-

tion 3.3); after that we will discuss various methods for specifying a distribution (Section 3.4 and 3.5).

3.2 Processor Declarations

3.2.1 Syntax

1. processor-declaration --_ primary-processor-structure [secondary-processor-structures]

2. primary-processor-structure _ PROCESSORS generalized-array-declarator

3. secondary-processor-structures ---* RESHAPE generalized-array-declarator-list

3.2.2 Semantics

Each program unit of a Vienna Fortran program may contain a processor-declaration, thereby introducing
one or more processor arrays. Processor arrays serve the following purposes:

1. To define the set of processors, P, on which the program will execute.

2. To impose one or more virtual processor structures on P (in the form of multi-dimensional arrays),

thus providing different views of the processor set.

3. To provide a means for accessing P and its elements in the program.

The form of a processor declaration is:

4 REAL arrays are generally used to illustrate the syntax and semantics of annotations. This can be immediately generalized

to the other variants of array declarations in FORTRAN 77.

2O

PROCESSORSgdl [RESHAPE gd2, . . . , gdr]

where the gdi, 1 < i < r are generalized-array-declarators (see Section 3.1.2) that satisfy the following rules:

1. Assumed size array declarators are not allowed.

2. Dimension bound ezpressions may contain references to the intrinsic function $NP. They may also
contain references to variable names as in adjustable array declarators. Any variable-name occurring

in such an expression is implicitly declared of type integer. Its scope is the program unit in which

the processor declaration occurs. If the processor declaration occurs in the main program, the values
of such variables are obtained from the environment. For processor declarations occurring in other

program units, the variables used in the declaration must appear in the argument list or in a common

block in that subprogram. Their values must not be redefined during program execution.

3. Each gdi introduces a processor array. The processor array associated with gdl is called the primary

array, all other arrays (if any) are called secondary.

4. All processor arrays are associated with the same set of processors, P. As a consequence, all processor
arrays have the same size and the values assigned to variables used in the dimension bound expression

must not violate this condition. Furthermore, for any two processor arrays, the array element ordering

(column major order), as specified in Fortran, determines a one-to-one correspondence between their
elements.

For any processor array R occurring in the processor declaration, the evaluation of the array declarators

yields an associated standard index domain I R.

There is always an implicit one-dimensional processor array declaration of the form $P(1 : tNP). If

the program does not contain an explicit processor declaration, $P is understood as the primary array,
and no secondary array exists. Otherwise, $P is a secondary array. A reference to the intrinsic function

$MY_PROC yields the index of the executing processor in tP.

The user or the environment of the program must provide the following information upon program start:

1. If the main program does not contain a processor declaration: the number of processors on which the

program is to execute must be specified. A reference to the intrinsic function $NP yields this value.

2. If the main program does contain a processor declaration:

(a) For any processor array specified by an assumed shape array declarator of rank n, an array index
set of rank n has to be specified.

(b) Each variable occurring in an adjustable array declarator must be defined.

Note that processor arrays do not imply a specific topology of the actual hardware structure: in particular,
they do not specify that the processors are physically connected as a mesh.

Assertions may play an important role in processor declarations by supplying the compiler with in-

formation on the range of available processors and the values of variables occurring in dimension bound

expressions.

Example 3 A two-dimensional primary process structure

ASSERT(NP1 .GE. 8)

PROCESSORS R2(I:NP1, I:NP1)

This declares a two-dimensional processor array R2 with NP12 processors. The value of NP1 is asserted

to be greater than or equal to 8. This constraint has to be satisfied when the value of NP1 is defined at the

start of program ezecution.

21

Example 4 Processor Reshaping

ASSERT(NP1 .GE. 8)

PROCESSORS R2(I:NP1, I:NP1) RESHAPE RI(I:NPI*NP1)

R1 provides a one-dimensional secondary process structure for R2. For all i,j with 1 < i,j < NP1,
R2(i,j) designates the same processor as Rl(i + (j - 1) • NP1).

Note that the explicit reshaping to R1, as shown in this example, is actually redundant, since $P is im-
plicitly declared identically to Rl.n

The processor declaration of this example will be used consistently throughout the examples of this

section, i.e., R1 and R2 will be used with the meaning defined here.

3.3 Processor References

3.3.1 Syntax

1. processor-reference ---. processor-element-name I processor-section ["(/" dimension-permutation"/)"]

2. processor-element-name --* array_element-name

3. processor-section ---, array-section

4. dimension-permutation ---* int_constant_expr--list

3.3.2 Semantics

Processor references are used in contexts which require that either individual processors or sets of processors

are explicitly specified. This includes the TO-clause in declaration annotations (Section 3.1.2), the dis-

tribute statement (Section 3.7.3), and the ON-clause in FORALL-loops (Section 4). Processor references

may be associated with an arbitrary processor array known at the place where the reference occurs.

A processor-reference designates either a processor-element-name or a processor-section, possibly supple-
mented by a dimension-permutation.

A processor element name designates a single processor by applying a subscript list to a processor array

name. This is done in the same way as the specification of an array element in FOaTaAN 77.

A processor section is an array section associated with a processor array, followed by an optional dimension

permutation. If a dimension permutation is not specified, then the processor section defines a subarray as

explained in Section 3.1.2.

A processor specification containing a dimension permutation has the form

PS[(/dl,..., dm/)]

where PS is a processor section of rank rn, and (dl,..., dr,), the dimension permutation, specifies a permu-
tation of (1,..., m). The evaluation of this construct yields a processor array PSI of dimension m such that

for all j, 1 < j < m, dimension j of PS I corresponds to dimension dj of PS.

Example 5 Based on Example _, we form the following processor references:

• R2 -- this defines the whole processor array

• R2(/2, 1/) -- this represents the transposed array R2, i.e., the processor in the j-th row and i-th column

of R2(�2, 1/) is the same as R2(i,j).

22

[:3

3.4

3.4.1

• RI(:: 2) -- this represents the section of the one-dimensional processor array containing every other

processor, i.e. RI(1),RI(3),

• $P(1 : $NP : 2) -- the same section as above

• R2(NP1, 3) -- a processor element name

• R1(3 * NP1) -- the same processor element as above

• R2(2 : NP1 - 2 : 2, NP1 - 2 : 0 : -4)(/2, 1/) -- this is a two-dimensional processor section. Assume

NP1 = 8. Then R2(2 : NP1 - 2 : 2, NP1 - 2 : 0 : -4) specifies the processors

R2(2, 6), R2(4, 6), R2(6, 6), R2(2, 2), R2(4, 2), R2(6, 2)

in this order. R2(2 :NP1-2:2, NP1-2:0: -4)(/2,1/) transposes the two dimensions: i.e., we

obtain an array, say R2 I, with two elements in the first dimension, and three elements in the second

dimension. The elements of R2', in array element order, correspond to the processors

R2(2, 6), R2(2, 2), R2(4, 6), R2(4, 2), R2(6, 6), R2(6, 2)

Distribution Expressions

Syntax

1. distribution-expression ---* simple-distribution-expression] composite-distribution-expression

2. simple-distribution-expression --* distribution-function-reference] distribution-extraction I distribution-

type-name

3. distribution-function-reference --_ function.reference

4. distribution-extraction _ "=" array-or-dimension

5. array-or-dimension ---, array_name [array-dimension

6. array-dimension ---* array_name dimension-qualifier

7. dimension-qualifier _ "." int_constant_expr

8. distribution-type-definition ---* DTYPE "(" dtype-pair-list ")"

9. dtype-pair --* name "= ("distribution-expression")"

10. composite-distribution-expression _ dimensional-expression-list

11. dimensional-expression _ simple-distribution-expression I ":"

23

3.4.2 Overview

A distribution expression specifies a class of distributions which is called a distribution type. The
application of a distribution type to an environment which specifies a (data) array and a processor reference
yields a distribution (see Sections 3.1.2, 3.6, 3.7.3, 5.1).

For example, (BLOCK, CYCLIC) is a composite distribution expression with two elements, which are

references to the intrinsic distribution functions BLOCK and CYCLIC. The associated distribution type
can be applied to an environment that provides a two-dimensional array and a two- or more-dimensional

processor section; this yields a distribution. More specifically, in

REAL A(N,M),B(M,N)

DIST (BLOCK, CYCLIC) TO R2

the distribution type associated with (BLOCK, CYCLIC) is applied first to array A and processor array
R2, and then to array B and R2. In both cases, the first dimension of the array is distributed blockwise,
and the second dimension cyclically. If N and M are different, the resulting distributions 6A and 6B will be
different.

Distribution expressions are either simple or composite. Simple distribution expressions fall into
three categories:

• Distribution function references: A distribution function is a special function used to specify

distribution types. The language provides a set of intrinsic distribution functions; in addition,

the user may specify arbitrary distribution types (see Section 5.1). We will first introduce the basic
intrinsic distribution functions BLOCK, CYCLIC, and INDIRECT. BLOCK and CYCLIC

specify mappings between one array dimension and one processor array dimension (Section 3.4.3); such
functions are called 1-1 distribution functions. More generally, an n-m distribution function

maps an n-dimensional array index domain to an m-dimensional processor section, where n and m are
both greater than or equal to 1. The types associated with such a function are called n-m distribution
types.

Distribution functions may have parameters, but must be side-effect free; their references follow the

normal FORTRAN 77 rules, except that an empty argument list need not be enclosed by parentheses.

• Distribution extractions specify a distribution type by referring to the distribution associated with

another array, or to that of a dimension of such an array. They will be discussed in Section 3.4.4.

• Finally, distribution types can be bound to a name (see Section 3.4.5); each applied occurrence of such
a distribution type name stands for the associated distribution type.

Composite distribution expressions are lists of dimensional expressions. They specify compos-
ite distribution types, which are associated with multi-dimensional arrays in such a way that different

dimensions are distributed independently. Each entry in a dimensional expression list is either a distribu-

tion expression that specifies a mapping from one array dimension to one processor array dimension, or the

elision symbol ":" that hides one array dimension from distribution. Such an array dimension is referred
to as hidden.

If a distribution expression is evaluated in a certain environment, all its components must be defined in
that environment. More specifically:

• in a distribution function reference, the function must be defined and all actual arguments must have
a defined value,

• the array occurring in a distribution extraction must be allocated and associated with a well-defined
distribution,

• a distribution type identifier must be bound to a distribution type,

• all simple distribution expressions occurring in a composite distribution expression must be defined.

24

3.4.3 Basic Intrinsic Distribution Functions

The basic intrinsic distribution functions are BLOCK, CYCLIC, and INDIRECT.

We first discuss BLOCK and CYCLIC. A reference to one of these functions defines a 1-1 distribution

type which maps exactly one array dimension to exactly one processor array dimension. We model the effect
of these functions in an environment that provides an array index domain I 'A = [1 : N] and a processor array

R1 with index domain I m =[I:NP1]. We will define the functions by specifying the associated distributions,

which will be simply denoted by 6. In all examples, we will assume NPI= 4.

1. Block Distributions

The block distribution function is BLOCK. It divides the array into contiguous blocks, whose sizes

differ by at most 1. More precisely, let q := [3_rfJ. If q = N/NP1, then the array is divided into NP1

blocks of size q. Otherwise, we have

N = q.NP1 +r = (q + 1)r + q(NP1 - r), where 0 < r < NP1.

In this case, the array is divided into r blocks of size q + 1 -- which are mapped to the first r processors

-- and NP1 - r blocks of size q, mapped to the remaining processors. The distribution function thus
can be defined as follows:

(a) Case 1:

(b) Case 2:

• 6(0

• _(_)

q = N/NPI: 5(i) = {[_1} for all i, 1 < i < N

q < N/NP1. Let N' := (q + 1)r:

= {[q--_l]) for all i such that 1 < i < N'

= [[i-Y' + r]} for all i such that N I < i < N.

Example 6 : Block Distributions

REAL A(12) DIST (BLOCK) TO R1

REAL B(13) DIST (BLOCK) TO R1

We assume NP1 = 4. For A, we have q-- 3 and Case 1:

• 5A(i)={liforl <i<3

• _A(i)= {2} for 4 < i < 6

• 3A(i) = {3) for7<i< 9

• 5A(i) = {4} for 10 < i < 12

For the second array, we obtain q = 3 and Case 2, with r = 1, applies:

• 6B(i)={1)forl <i<4

• _B(i) = {2}for 5 ___i < 7
• 6B(i)={3}for8<i< 10

• 6B(i) = {4}for 11 < i < 13.

[]

For an explicit specification of the function BLOCK see Section 5.1.3. Additional intrinsic func-
tions provide the means for specifying arbitrary rectilinear distributions, including irregular ones (see

Section B).

25

2. Block-Cyclic and Cyclic Distributions

Block-cyclic distributions are specified by the function CYCLIC, with an argument, l > 1, of type
integer. CYCLIC(I) defines contiguous segments of length I and maps them cyclically to the processors.
The distribution function is given as follows:

6(i) = {MODULO([L_], NP1 + 1)} for all i, 1 < i < N

Example 7 Block-Cyclic Distribution

REAL D(13) DIST (CYCLIC(2)) TO R1

• 6c(i) = {1} fori = 1,2,9,10

• 6c(i) = {2} fori = 3,4, 11,12

• 6c(i) = {3} fori = 5,6,13

• 6c(i) = {4] fo,"i = 7, 8

[]

References to CYCLIC may be written without specifying an argument: in this case, an argument
value of I = 1 is assumed, and we speak of a cyclic distribution.

Example 8 Cyclic Distribution

REAL C(12) DIST (CYCLIC) TO R1

[]

• 6c(i) = {1} fori= 1,5,9

• 6c(i) = 12}for i = 2,6,10

• 6c(i) = {3} for i = 3,7,11

• 6c(i) = {4}Io_i = 4, s, 12 []

. Indirect Distributions

Some large and computationally intensive problems are characterized by dynamically varying data
structures and/or irregular access patterns.

One method that can be applied in such a situation is the representation of the distribution of an array

by means of a mapping array, C, wh{ch is defined and used at run-time. We call this an indirect
distribution and model it via references to the intrinsic distribution function INDIRECT.

Assume that INDIRECT(C) is to be applied to an array A. C, the mapping array, is an integer array
that must satisfy I A _ I v. It is understood to define a mapping from I A to the implicit linear processor

array SP(1 : $NP) by associating with every index in I A the corresponding value of C. More precisely,

for all i E I A, 6_tp(i) ----{C(i)}.

An example for the application of this function is given in Section 3.7.3.

26

3.4.4 Distribution Extraction

A distribution extraction is specified in the form

= A[.dim]

where A is an array followed by an optional dimension specifier. At the time of evaluation of this construct,
A must be associated with a well-defined distribution, say 6A. If dim is specified, 6A must be composite,

and dim an integer constant expression with a value between 1 and rank(A).

If the dimension specifier is not present, then the distribution extraction yields the distribution type

associated with 6A. Otherwise, it yields the distribution type of the dimension of A determined by the value
of dim.

Example 9 Distribution Extraction

REAL B(N) DIST (BLOCK) TO R2

REAL E(2*N) DIST (=B)

The second declaration is equivalent to:

REAL E(2*N) DIST (BLOCK) TO R2

i.e., both B and E will be distributed by BLOCK. Note that the block sizes for the arrays B and E will be

differenl since the extents of the two arrays are different. D

3.4.5 Distribution Type Definitions

A distribution type definition has the form

DTYPE (tl --- (dexl),...,tn = (dex,))

where the ti and dexi, 1 < i < n, respectively denote names and distribution expressions. For each i, dezi

is evaluated, and the resulting distribution type is bound to ti. Any arguments for distribution functions

occurring in dezi are evaluated at this time. The ti are called distribution type names; every reference
to such a name represents the associated distribution type.

Example l0 Distribution Type Definition

DTYPE(BLK3= (BLOCK, BLOCK, BLOCK), REPS= (CYCLIC(IO,:,CYCLIC(2*IO,:))

introduces identifiers BL3 and REPS, which represent the distribution types associated with the distribu-

tion expressions (BLOCK,BLOCK,BLOCK) and (CYCLIC(K'),:,CYCLIC(2*K'),:), respectively, where K'

denotes the value of K at the time the distribution type definition is evaluated. [3

3.4.6 Composite Distributions

In this section we will define the concept of a composite distribution. Such a distribution can be repre-

sented as a tuple of independent mappings between single array and single processor array dimensions. In

the subsequent section, we will see how composite distribution expressions are evaluated to determine classes

of such distributions, which will be called composite distribution types.

We begin with an example illustrating some of the basic rules underlying composite distributions.

27

Example11 Composite Distributions

REAL B(N,N) LIST (BLOCK, CYCLIC) TO R2

Dimension i, i = 1, 2, of array B is mapped to dimension i of R2; the first dimension is to be distributed by

BLOCK, and the second cyclically. IfNP1 divides N and q = N/NP1, then this specifies a distribution 6
such that

6_(i, J) = {rfl,MODULO(j - 1, NP1) + 1}

for all i,j with 1 < i,j <_ N.

In

REAL C(N,N,N) LIST (BLOCK, CYCLIC, :) TO R2

the third dimension of C is hidden - which is indicated by the elision symbol _'". -, whereas the first and

secord dimensions of C are mapped to the first and second dimensions of R2 in the same way as for B

above. Thus we obtain the distribution function

6c(i,j,k) = {[_],MODULO(j- 1,NP1) + 1)

for all i, j,k such that 1 < i,j,k < N.

With another example, we illustrate replication across a processor dimension. Consider

REAL D(N) DIST (BLOCK) TO R2

In this case, the first dimension of D is mapped to the first dimension of R2, and replication is performed

across all processors in the second dimension of R2. This yields:

= {(r}l,r2) I x < r2 < NP1} for alli (1 < i < N)

[]

We now define composite distributions precisely:

Definition 12 Let

1. A E .,4 denote an array of rank n with index domain I A = [ll : Ul,...,ln : Un],

2. R a processor section of rank m with index domain I n = [1 : NP1,..., 1 : NPm], and

3. 6 a distribution for A with respect to tL

6 is called a composite distribution of rank n iiff the following conditions are all met:

1. Each dimension of A is characterized with respect to 6 as either dlstributed 0rhidden. Let (dl, ..., dn,)
denote the sequeTice of distributed dimensions, where 1 < n' <_ n, and h := n - n _ designates the

number of hidden dimensions.

2. m>n'

3. The distributed array dimensions dr,..., dn, are mapped to the processor dimensions 1,..., n t in this

order: For each j, 1 < j < n', there exists a distribution 6aj from I a to I_._ -- d I

28

4. For each i= (il,-..,in) E IA:

,_(i) = {(r_,..., r,_) _ In t Vj, 1 _<j _<n': r_ _ 6a_(ia_)}

Note that for m > n _ the m - n_ processor dimensions n_ + 1,..., m are universally quantified.

5. 5 is represented as an n-tuple, where each position is either an elision symbol or a distribution 5aj, as

defined above.

A distribution which is not composite is called simple. []

There are two important special cases for composite distributions, which are characterized by h = 0 and
h _ T/.,

In the first case, h = O, all dimensions erA are distributed; we have n I = n, and the sequence (dl,..., dn,)

of distributed dimensions is equal to (1,..., n).
In the second case, h = n, which is denoted by the distribution expression (:,..., :), consisting of n elision

symbols -- we have n I = 0 and the sequence of distributed dimensions is empty. In this case, the expression
for the distribution reduces to

,5(i)= IR,

expressing the total replication of the array.

3.4.7 Evaluation of Distribution Expressions

Let dex denote a distribution expression: then we first specify the evaluation of dex, yielding the distri-

bution type associated with dex; this will be denoted by type(dex). In the second step, we describe the

application of a distribution type, t, to an environment that specifies a (data) array, A, and a processor

section, R; this yields a distribution of A with respect to R. The distribution type of a distribution 5 will

be denoted by type(5).

Evaluation of Simple Distribution Expressions

• Consider a distribution function reference dfr:

f[(al,...,ak)]

where f is the name of a distribution function, and ax,..., ak (k >_ 0) the list of its explicit actual

arguments (see Sections 3.4.3 and 5.1).

The distribution type associated with dfr is given as

type(air) :=f[(a_,...,a_)]

where

- If ai is scalar, then a_ is the value of ai.

- If ai is an array section A(ssl,...,ss_), then a_ = A(ss_,...,ss_), where each ss}, 1 _< j _< n, is

determined from ssj by replacing each expression occurring in ssj by its value.

- Otherwise, a_ = ai (i.e., the name of ai).

29

Nowassumethat t := f[(a_,...,a_)] has been determined, and we want to apply t to the given
environment. Then, if the ranks of A and R are n and m, respectively, f must be an n-m distribution

function, with A and R as its implicit arguments. After transferring the arguments, the function is

executed according to the rules specified in Section 5.1. The application must yield a distribution 6

for A with respect to R.

A distribution extraction = B is evaluated by replacing it with t := type(6B). The resulting type, t,
can then be applied to the given environment.

A distribution type name is evaluated by replacing it with the associated distribution type, t. t can
then be applied to the given environment.

Evaluation of Composite Distribution Expressions

A composite distribution expression, dez, has the form:

dexl, . . . , dezn

where each dexi is either a simple distribution expression yielding a 1-1 distribution type, or the elision
symbol, expressing the hiding of a dimension. Assume that h is the number of elision symbols in dex, and

n' := n - h. The evaluation of dex leaves all elision symbols unchanged, and replaces each dexl by the
associated distribution type. This yields an nt-n ' distribution type, which can be applied in the context of

any data array of rank n, and any processor section of rank rn, where m :> n _, to obtain a distribution as
defined in Def.12.

3.5

3.5.1

1.

2.

3.

.

5.

6.

7.

8.

Alignment Specifications

Syntax

alignment-specification ---* ALIGN aspec

aspec _ alignment-expression] functional-alignment

alignment-expression ---* target-array-identification "("bound-variable-list")" WITH source-array-
reference

target-array-identification ---* array_name I"$"

bound-variable ---* variable_name I ":"

source-array-reference ---* data-reference

functional-alignment --* "(" alignment-function-reference ")" WITH source-array-section

alignment-function-reference _ function_reference

3.5.2 Introduction

Vienna Fortran provides features for the construction of alignment functions (see Section 2.4). Given an

alignment function a from a target array to a source array, and a distribution for the source array, then a

distribution for the target array can be determined as specified in Def.11.
An alignment specification has the form

ALIGN aspec

where aspec is either an alignment expression or a functional alignment. Alignment expressions provide
a simple syntax for specifying a class of standard alignment functions. Functional alignment, in contrast,

allows references to arbitrary alignment functions (see Section 5.2).

3O

3.5.3 Alignment Expressions

An alignment-expression is used in a context specifying one or more target arrays. We consider one such

array, A, and assume that its rank is n. An alignment expression has the form:

ta (Xl,...,xt,) WITH sat

where:

• ta is the target array identification, ta is either the name of the target array (if there is only one

in the environment) or the symbol "$" (representing all arrays in the environment).

• Each zi, 1 < i < n, is either a bound variable whose scope is limited by the alignment expression, or a

colon. If a variable is specified, then it ranges over the i-th dimension of the index domain associated

with A: it is implicitly declared of type integer, and its value range is I_. Any program variable

with the same name is hidden until the end of the alignment specification. If a colon is specified, we

implicitly replace it by a newly generated variable, which does not occur elsewhere in the program.
For this variable, the same rules as those outlined above hold.

• sar represents the source array reference. It has the form

B(ss,,..., ssm)

where B is an array name, designating an array of rank m, and the ssj, 1 < j <_ m are section

subscripts. Each section subscript ssj must satisfy exactly one of the three conditions specified below:

- ssj is a subscript triplet. In this case, none of the bound variables may occur in ssj.

- ssj is a subscript that contains none of the bound variables. Then it may be an arbitrary integer
expression.

- ssj is a subscript that contains one of the bound variables, say xl. Then, no other section subscript

ssj,, j' # j, may contain zi. Besides zi, ssj may contain only integer constants (including symbolic

constants) and the operators "+", "-", and "*", which may be used to form expressions of type
integer which are linear in z_. Furthermore, the intrinsic functions MAX, MIN, MOD, LBOUND,

UBOUND, and SIZE (see Appendix B) can be applied.

We are now in a position to specify the alignment function, c_, determined by the alignment expression:

Select an arbitrary tuple k = (kl,..., k,) E I a, replace each bound variable xi occurring in B(ssl,..., ss,,)

by ki, and evaluate the resulting array reference, which may designate either an array element, or an array

section. Let I B (k) denote the set of indices of B associated with the evaluated reference. Then:

:= IS(k)

Now, given a distribution for B, a distribution for A can be immediately constructed (Def.11).

Example 12 Alignment expressions
Consider the following set of annotated declarations:

REAL C(10,10,10) DIST (BLOCK, CYCLIC, :) TO R2

REAL D(1000) DIST (BLOCK) TO R1

REAL
REAL

REAL

REAL

REAL

REAL

REAL

C1(10,10,10) ALIGN C1(I1,I2,I3)

C2(10,10,10) ALIGN C2(I,J,K)

C3(lO,lO,lO) ALIGN C3(:,J,:)
C4(10,10,10) ALIGN C4(I1,I2,I3)
C5(5,5,5) ALIGN C5(:,:,:)
C6(10,10,10) ALIGN C6(:,L,:)

C7(10,10,10), C8(10,10,10) ALIGN

WITH c(I1,I2,I3)
WITH C(J,I,K)

WITH C(I:5,MIN(2*J+I,10),I)

WITH C(:,MAX(I2-3,1),I3)

WITH C(2::2,6,:)

WITH D(50*L+100)
(:,:,:) WITH D

31

Assume for this example that NP1 = 2, i.e., the processor arrays are declared as RI(1 : 4) and R2(1 : 2, 1 : 2).
Then the element-based distributions of arrays C and D are as follows:

6c(i,j,k) = {R2(1, 1)} for 1 _ _

6c(i,j,k) = {R2(2, 1)} for 6 _ _

6c(i,j,k) = {R2(1,2)} for 1 _ _

6c(i,j,k) = {R2(2,2)} for 6 _ _

< i < 5,j = 1,3,5,7,9, and allk, 1 < k < 10

< i < 10,j = 1,3,5,7,9, and allk, 1 < k < 10
< i < 5,j = 2,4,6,8, 10, and allk, 1 < k < 10

<i<10,j=2,4,6,8,10, andallk, l<k<10

6D(i) = {RI(1)} for 1 < i < 250
6D(i) = {Rl(2)} for 251 < i < 500

6D(i) = {Rl(3)} for 501 < i < 750

6D(i) = {Rl(4)} for 751 < i < 1000

The alignment expression for C1 specifies the target array identification as C1 and the bound variable list

(I1,I2, I3), where I1 ranges over the first, I2 over the second, and I3 over the third dimension of C1. The

range of all three variables is the set of integer numbers in the interval [1 : 10]. The source array reference

specifies for each (I1, I2, 13) the identical triplet (I1, I2, I3). Thus, the associated alignment function is
identity, and array C1 has the same distribution as C.

The alignment expression for C2 transposes the first and second dimensions, i.e., the resulting alignment
function maps each index triplet (I, J, K) in I c2 to the index triplet (J, I, K) in I c. The distribution of C2
may be obtained from that of C by exchanging i and j.

The alignment expression for C3 replicates the first dimension, and collapses the third dimension, while

mapping J to MIN(2 * J + 1, 10) in the second dimension. Thus, the alignment function specified is

a(i,j,k) := {(i',j',k') l l <_i' <_ 5,j'= MIN(2.j + 1, 10), and k' = 1}

From this we obtain the distribution of C3 as follows:

6ca(i,j,k)={R2(1,1)}forl<i< 10,1_<j<4,1<k< 10

6c3(i,j,k) = {R2(1,2)) for 1 < i < 10,5 < j < 10, 1 < k < 10

Similar

6c4(i,j,

6c4(i,j,

6c_(i,j,

considerations lead to the distributions as given below:

k) = {R2(1,1),R2(2,1)}forl < i< lO, j= 1,2,3,4,6,8, i0, 1 < k < 10

k) = {n2(1, 2), R2(2, 2)} for 1 < i < 10,j = 5,7,9, and all k, 1 < k < 10

k) = {R2(2, 1),R2(2,2)} for 1 < i,j,k < 5

6c6(i,j,k) = {RI(1)} for 1 < i,k < 10, 1 _< j _< 3
6c6(i,j,k) = {Rl(2)} for 1 <_ i,k < 10,4 < j <_ 8

6c6(i,j,k) = {Rl(3)} for 1 <_ i,k <_ 10,9 < j_< 10
6cr(i,j,k) : _cs(i,j,k) : R1 for all 1 < i,j,k < 10
D

3.5.4 Functional Alignment

Functional alignment allows references to arbitrary alignment functions (see Section 5.2). Alignment
functions can be classified in a similar way as distribution functions: they are called n - m functions, if

they specify a mapping from an n-dimensional target array to an m-dimensional source array. Alignment

32

functionsmaycontainarguments,but arenotallowedto havesideeffects;theyarereferencedin thesame
wayasFORTRAN77functions,exceptthatan empty argument list need not be enclosed in parentheses.

Functional alignment is specified in the form

ALIGN (afr) WITH sas

where sas is an array section representing the source array, B, of the alignment, and afr is a reference to an

alignment function. Assume that the context in which the functional alignment occurs determines a target
array, A, of rank n, and that B has rank m. Assume that the alignment function reference, aft, has the

form

f[(al,...,ak)]

where f is the name of an alignment function, and al,..., ak (k __ 0) the list of its explicit actual arguments

(see Section 5.2).
Then, f must be an n-m alignment function, with A and B as its implicit arguments. After transferring

the arguments, the function is executed according to the rules specified in Section 5.2. This application
must yield an alignment a for A with respect to B. Then, given that B is associated with a well-defined

distribution, _B, a distribution, 6A is determined for A from _B and a, according to the construction of

Def.ll.
If the distribution of an array A has been defined by functional alignment in the above way, then it is

associated with a sequence of arrays B= Bo, B1,.. ,, Br, where

• The distribution of B0, the root array, is defined only by distribution function references,

• Br = A, and

• for all j, 1 < j < r, Bj is derived from Bj-1 by functional alignment.

The distribution of B0, together with a description of the sequence of alignment function references and

array sections associated with B, yields the type of 6A. In this sequence, alignment function references are

processed in the same way as distribution function references when evaluating their type (see Section 3.4.7),

and array sections are characterized by the array names and the values associated with their subscripts and

subscript triplets.
It can be easily seen that all alignment expressions can be eliminated, if proper alignment functions are

generated. Thus, the problem of determining the type of a distribution defined via an alignment expression
can be deferred to the case discussed above.

3.6 Static Array Annotations

3.6.1 Syntax

1. static-array-annotation _ [distribution-specification I alignment-specification]

2. distribution-specification ---, DIST dspec

3. dspec _ "("distribution-expression")" [TO processor-reference] I TO processor-reference

3.6.2 Semantics

A static array annotation, when appended to a declaration of one or more arrays, characterizes these arrays

as statically distributed, and specifies an associated distribution. This association is valid in the program unit
in which the declaration occurs, throughout all allocation instances of the arrays. Static array annotations

may be appended to declarations of FORTRAN 77 arrays as well as to declarations of allocatable arrays.

33

All expressionsoccurringin componentsof staticarrayannotationsareevaluatedat thetimethedecla-
rationis evaluated.A subsequentmodificationofanyvariableoccurringin theannotationhasnoeffecton
thedistributiondeterminedfor theannotation.

Considerthe declarationof anarrayA of rank n. A static array annotation, appended to such a
declaration, can have one of three forms:

1. It is empty. This case is equivalent to the annotation

DIST (: ,:) TO R

where the specified distributionexpression contains exactly n elision symbols, and R is _ssumed to be

the primary array.

This denotes total replication, as explained in Section 3.4.6.

2. The annotation is a distribution-specification. Then we have to distinguish two cases:

* DIST(dex)[TO pref]

Here, dex is a distribution-expression and pref an optional processor reference. The meaning of
this construct for the case in which prefis specified as a processor section has been explained in

Section 3.4. If prefis a processor-element-name, R(jl,...,jm), then the rank of dex must be 0.

In this case, pref is re-interpreted as the m-dimensional processor section R(jl : jl,..., j,_ : jm).
If pref is not explicitly given, the primary processor array is substituted by default. Note that

this substitution results in an error, if the condition for the dimension of the processor section
specified in Def.12 is not met.

• DIST TO pref

This is equivalent to

DIST (:,...,:) TO pref

where the distribution expression contains exactly n elision symbols (n is the rank of A).

3. The annotation is an alignment-specification. The meaning of this construct has been explained in
Section 3.5.

Example 13 Defaults in static array annotations

Consider the following declarations:

REAL El(N)

REAL E2(N)

REAL E3(N,M)

REAL E4(N,N)

REAL E5(N,N)
REAL E6(N,N)

REAL E7(N,N)

REAL E8(N,N)

REAL E9(N,M,L)
REAL E0(N,N)

DIST (BLOCK)
DIST (:)

DIST (BLOCK, CYCLIC(K))

DIST (BLOCK,:)

DIST (:,:)

DIST (:,:) TO $P($NP)
DIST TO R2

DIST TO $P($NP)

DIST (BL OCK, BL OCK, BL OCK)

DIST(BLOCK,:) TO $P($NP)

34

In the first five of these declarations, the missing processor reference is substituted by the primary array

R2, which is two-dimensional. Note that this results in replication across at least one dimension of R2, if

the rank of the distribution ezpression is less than 2.
The annotation associated with E6 specifies that all elements are to be mapped to the one processor

$P($NP), while each element of E7 is owned by each processor. E8 is distributed in ezactly the same way
as E6.

The following are illegal:

REAL E9(N,M,L) DIST(BLOCK, BLOCK, BLOCK)

REAL E0(N,N) DIST (BLOCK,:) TO SP($NP)

A substitution of the primary array R2 in the annotation for E9 results in an illegal annotation; and the

distribution specified for EO has rank 1 and must not be mapped to a single processor element, t_

The distribution of scalar objects may be given by annotations that (explicitly or implicitly) specify

distribution expressions of rank 0.

3,7

3.7.1

1.

2.

3.

4.

5.

6.

7.

8.

9.

Dynamically Distributed Arrays

Syntax

dynamic-array-annotation --, DYNAMIC (primary-array-annotation [secondary-array-annotation)

primary-array-annotation --* ["," distribution-range] ["," initial-distribution]

distribution-range --* RANGE "("dspec-list")"

initial-distribution --, distribution-specification I alignment-specification

secondary-array-annotation --* "," CONNECT connection

connection --. distribution-extraction [aspee

distribute-statement -_ DISTRIBUTE distribution-group

distribution-group --, array_name-list "::" [(dspec I alignment-specification)] [notransfer-attribute]

notransfer-attribute --* NOTRANSFER ["("array_name-list")"]

3.7.2 Dynamic Array Annotations

A dynamic-array-annotation characterizes the arrays in the associated declaration as dynamically distributed.

Distributions for such arrays are determined at run-time, and may change during the execution of the program
unit in which the declaration occurs.

We define an equivalence relation connect in the set of dynamically distributed arrays that satisfies the

following conditions:

1. Each equivalence class consists of one distinguished member, the primary array, B, of the class, and

0 or more secondary arrays. We denote the class associated with primary array B by C(B).

2. The distribution of each secondary array A E C(B), if any, is defined in the declaration of A by

referring to B in a secondary-array-annotation, which specifies a connection by distribution extraction

or alignment.

3. Distribute statements are explicitly applied to primary arrays only; their effect is to redistribute all

arrays in the associated equivalence class so that the connection is maintained.

35

4. Thedistributionsof arraysin differentequivalenceclassesareindependentofeachother.

Wefirstdiscussannotationsspecifyingprimaryarrays.Theyareof thefollowingform:

REAL adt, ad:, . . . , adr DYNAMIC [,distribution-range] [,initial-distribution]

where the adi, 1 _< i < r specify array identifiers Bi and their index domains. All Bi are declared to be

primary dynamic arrays. If any of the two optional attributes occurs, the rank of all Bi must be the same.
The meaning of the attributes is as follows:

1. Distribution Range

A distribution-range specifies the set of all distribution types (or a superset thereof) which can be
associated with the arrays Bi during the execution of the procedure in which the declaration occurs.

Furthermore, the associated processor references may be optionally indicated 5. The distribution range

is specified by the keyword RANGE, followed by a parenthesized list of dspecs (see Section 3.6). The
"*" can be used as a "don't care" symbol in any place where either a distribution expression or an

argument for a distribution function may occur, with the meaning that it allows any legal substitution.

Distribute statements applied to the Bi must respect the restrictions imposed by this attribute.

If no distribution range is specified, then there is no restriction on the distributions that can be

associated with a primary array.

2. Initial Distribution

An initial-distribution of a primary array is given by a distribution-specification or an alignment-
specification. It is evaluated and associated with the array each time an allocation instance is initiated.

Note that a primary array for which an initial distribution has not been specified cannot be legally ac-
cessed before it has been explicitly associated with a distribution by the execution of either a distribute
statement or a procedure call.

We now proceed to the specification of secondary arrays. Let

REAL adl, ad2,..., ads DYNAMIC, CONNECT connection

denote the annotated declaration of secondary arrays As. , 1 < j < s, where connection can be any of the
following:

• a distribution extraction: = B[.dim]

• an alignment expression:... WITH B(...)

• a functional alignment: (aft) WITH B(...)

In all three cases, all secondary arrays Aj are connected to an array B, which must be a primary array.

B is called the source array of the connection. As a result of this declaration, the Aj are entered into the

equivalence class C(B). Each time a distribute statement is applied to B, the distribution of all Aj is newly
defined such that 6Aj and 6B remain in the relationship established by the connection.

The same primary array may be the source array for more than one secondary array annotation.

Sir the processor re.ferenees are not given, any processor sets may be associated with the array; that is, there is no default

rule substituting the primary processor array in this case.

36

Example 14 Dynamic array annotations

REAL BI(M) DYNAMIC

REAL B2(N) DYNAMIC, DIST(BLOCK)

REAL B3(N,N), B4(N,N) DYNAMIC,

& RANGE ((BLOCK, BLOCIO, (CYCLIC, CYCLIC(*)),(*,CYCLIC)),

& DIST(BLOCK, CYCLIC) TO R2(::2,::4)

REAL AI(N,N), A2(N,N) DYNAMIC, CONNECT (--B4)

All arrays introduced in the above declaration are dynamically distributed. B1 is a primary array with

unspecified distribution range and no initial distribution. B2 is a primary array with an unspecified distri-

bution range and the initial distribution (BLOCK). B3 and B4 are primary arrays for which a distribution
range as well as an initial distribution are specified.

A1 and A2 are declared as secondary arrays, which are connected to B4 via distribution extraction. As

a consequence, d(B4) __D{B4, A1,A2}; the connection specifies that the distribution type of A1 and A2 will

be always the same as that of B4. []

3.7.3 Distribute Statements

Consider a distribute-statement of the form

DISTRIBUTE B:: da [notransfer-attribute]

where the B is an array name associated with a primary array, and da is either empty, or a dspec (Section 3.6),

or an alignment-specification (Section 3.5). The allocation status of B must be allocated.
da is evaluated at the time the distribute statement is executed; its meaning is the same as specified in

Section 3.6. Note that components of da such as section-subscripts in a processor reference or arguments for

distribution or alignment functions may depend on variables whose actual values are used in this step. Let

61 denote the distribution state immediately before the execution of the distribute statement. The execution

of this statement has then the following effect:

1. Evaluate da and apply the resulting distribution type, t, to B: this yields a distribution, 6B, for array
B.

2. For each array A 6 C(B) - {B}, determine a distribution from t, I A, and the connection between
A and B, as established in the associated secondary array annotation. Let 6A denote the resulting

distribution.

3. We define a set NOTRANSFER as follows:

(a) If a notransfer-attribute is not specified, then NOTRANSFER:= ¢

(b) If a notransfer-attribute is specified in the form NOTRANSFER, then NOTRANSFER:= C(B).

(c) If a notransfer-attribute is specified in the form

NOTRANSFER (C1,..., Cm)

where m >_ 1, then all Cj, 1 _< j _< m must be elements of C(B), and we define NOTRANSFER:=

{c,,..., c,,,)}.

4. A new distribution state, 62, is derived from _1 by associating B with 6B, and all A 6 C(B) - {B} with

6A, as computed above. For all arrays in the set NOTRANSFER, only the access function is changed

and the elements of the arrays are not physically moved.

37

A distributestatementwithmorethan one primary array in its distribution-group:

DISTRIBUTE BI,..., Br:: da [NOTRANSFER[(ntl)]]

is equivalent to the sequence

DISTRIBUTE BI:: da[NOTRANSFER[(ntll)]]

DISTRIBUTE Br:: da [NOTRANSFER[(ntlr)]]

where the ntliare sublistsofntl,specifyingexactlythose elements in ntl that belong to C(Bi).

Example 15 We refer to the declarations in the previous example. It is assumed that the statements below
are executed unconditionally in the order of their appearance in the text.

DISTRIBUTE B1 :: (BLOCK)

K= expr
DISTRIBUTE B1,B2 :: (CYCLIC(K))

DISTRIBUTE B3 :: (BLOCK, CYCLIC)

DISTRIBUTE t34 :: (=el, CYCLIC(3))

In the first statement, the array B1 is distributed by (BLOCK).
In the second statement, B1 and B2 (both of which are currently distributed by (BLOCK)) are redistributed

as (CYCLIC(K')), where K' denotes the value assigned to the variable K in the assignment K = expr.
The third statement redistributes B3 as (BLOCK, CYCLIC); in the next statement, B4 and the associated

secondary arrays A1 and A2 are distributed as (CYCLIC(K'), CYCLIC(3)).

Example 16 Indirect distributions

INTEGER C(M) DIST (BLOCK)

REAL A(M) DYNAMIC

DISTRIBUTE A :: INDIRECT(C)

This example illustrates an application of the INDIRECT intrinsic distribution function (see Sec-

tion 3.4.3). The mapping array C is a statically distributed array, and distributed by (BLOCK). At the
time the distribute statement is executed, all elements C(i),i E I a must be defined. Their values determine

the processor indices to which the corresponding elements of A are to be mapped, rn

3.8 Control Constructs

3.8.1 Syntax

1. control-construct --, dcase-construct [if-construct

2. dcase-construct --_ select-dcase-statement condition-action-pair.., end-select-statement

3. select-dcase-statement --* SELECT DCASE "(" array_name-list ")"

4. condition-action-pair --, CASE condition action

5. condition --, query-list I DEFAULT

38

6. query_ [name-tag](dspec["*")

7. name-tag---*array_name ":"

8. action ---, [ezecutable_statement]...

9. end-select-statement ---, END SELECT

10. if-construct --_ logicaLif_slatement I block_if_statemenl I else_if_statement

3.8.2 Introduction

Consider a reference, aref, to an array A. The distribution type associated with A at the time that reference

is encountered during program execution may or may not be derivable from an analysis of the program text.

For example, if A is associated with a declaration annotation that specifies a distribution function reference

whose arguments are all known, then the distribution type of aref is known as well. In contrast, if A is a

dynamically distributed array, or a dummy argument with an inherited distribution (see Section 3.10) then
it may not be possible to determine the distribution type of are f from the context.

The control-construcls have been included in the language to alleviate the problems arising from the

second case: first, they allow the user to formulate an algorithm, depending on the actual distribution

type of one or more arrays; secondly, they provide the compiler with information about the distribution of

arrays. They include the dcase-constrnct, which is modeled after the Fortran 90 CASE construct, and the

if-construct, which is based on a generalized form of logicaLezpressions, and the related Fortran if statements.

3.8.3 The DCASE Construct

The dcase-construct has the form

SELECT DCASE (A1,...,Ar) capl,...,eapm END SELECT

where

* r > 1 and all Ai, 1 < i < r, are array names. The Ai are called selectors. At the time of execution of
the dcase construct, each selector must be allocated and associated with a well-defined distribution.

* m >_ 1 and each capj, 1 < j < m, is a condition-action-pair, where the condition is either a query-list
or the keyword DEFAULT, and the action is a block. A block is a sequence of executable_statements,

including the statements of the language extension, except for the distribute statement. None of the

statements in a block may be the target of a branch from outside of that block. It is permissible to
branch to an end-select-statement only from within the dcase construct.

The dcase construct selects for execution at most one of its constituent blocks. It is evaluated as follows:

1. The distribution of each selector, and its type, are determined.

2. Let (el,al), (c2,a2),... denote the sequence of condition action pairs in the dcase construct. Then

cl, c2,.., are sequentially evaluated until either a j, 1 < j < rn is reached such that cj matches, or no
match occurs.

If ej matches, then tile associated action aj is executed. This completes the execution of the dcase
construct. If no match occurs, the execution of the dcase is completed without executing an action.

A condition cj matches iff one of the following constraints is satisfied:

• cj is the keyword DEFAULT

39

• ej is a list of queries, each of which matches. Each query tests the distribution of one selector array.

Query lists may be either positional or name-tagged.

In a positional query list, the queries are associated with the selectors A1, A2,... in this order. In this

case, none of the queries can have a name-tag attached to it.

In a name-tagged query list, the selector associated with each query is explicitly specified by a name-tag.
The order in which the queries occur in such a list is semantically irrelevant.

A query list need not contain a query for every selector specified in the select-dcase-stalement. In such

a case, an implicit "*" is inserted for every selector which is not represented.

Now consider a single query.

The query specifies a modified distribution expression, dex, and an optional processor-reference, pre.f.

If dez and prelate both specified, then the query matches iff both dex and prefmatch. If prefis not
specified, then the query matches iff dex matches s.

A processor reference pref matches iff it specifies the set of processors, in the same order, to which

the selector array has been distributed.

The modified distribution expression can take any of the following forms:

- the symbol "*"

- a distribution expression without distribution extractions

- a modified distribution expression, without distribution extractions, which may contain an aster-

isk, "*", as a dimensional expression or in an argument position of a reference to a distribution
function.

Assume that the query is associated with a selector of distribution type t.

1. If dex ="*", then dex matches.

2. If dex is a distribution-expression, and has distribution type g, then dex matches iff t = g.

3. If dez does not satisfy the two conditions given above, then it matches iff t = t", where t" is

the result of substituting for each "*" occurring in dex the corresponding component of t. This
substitution must be possible and well-defined.

Example 17 The dcase construct

REAL BI(M) DYNAMIC

REAL B2(N) DYNAMIC, DIST(BLOCK)
REAL B3(N,N), DYNAMIC,

& RANGE ((BLOCK, BLOCK), (CYCLIC, CYCLIC(*)),(*,CYCLIC)),
& DIST (BLOCK, CYCLIC)

DISTRIBUTE B1

DISTRIBUTE B2

DISTRIBUTE B3

_Note that there is no defauk rule here - in contrast to distribution-specifications- that substitutes the primary processor
array, if pre] is not given.

4O

SELECTDCASE(B2)
CASE(BLOCK)

al

CASE (CYCLIC)
a2

CASE (CYCLIC(*))

a3
CASE *

a4

END SELECT

In this dcase construct, we use one selector, the array B2. Depending on the actual distribution associated

with B2 at the time the dcase construct is executed, exactly one of the four statement blocks al,...,a4 will

be executed: Let t denote the distribution type associated with 6n. Then, if t = (BLOCK), the first query
list matches, and al is executed.

If t = CYCLIC (note that this is equivalent to CYCLIC(I)), then the first query list fails, but the

second matches, and a2 is executed.

If t = CYCLIC(L), where L > 1, then the first two query lists fail, and the third matches. As a
consequence, a3 will be executed.

Finally, if t is of any other distribution type, then the first three query lists fail, and the fourth matches.

In this case, a4 is selected for execution.

The slightly more complicated example below uses a selector set with the three members El, B2, and B3.
Assume that DF is a distribution function with two integer arguments, and that ti is the distribution type
associated with Bi :

SELECT DCASE (B1,B2,B3)

CASE (BLoci:), (ELOCK),(CYCLIC(),CYCLIC))
al

CASE BI: (DF(L1,L2)), B3:(BLOCK,*))

a2

CASE (DE(*, *)), (DE(*, *))

a3

CASE B3:(BLOCK, CYCLIC)
a4

CASE DEFAULT

a5
END SELECT

The first query list is positional; it matches if tl = t2 = (BLOCK), and tz = (CYCLIC(2), CYCLIC).

The second list is name-tagged; it matches if tl = (DF(L1,L2)), t3 = (BLOCK, If), where t' is arbitrary

(within the constraints set by the range attribute for this dimension), and t2 is any distribution type.

The third query list matches ifta = (DF(al, a2)) and t2 = (DF(az, a4)), where the ai are arbitrary, t3 may
be any distribution type.

The fourth query list matches if tz = (BLOCK, CYCLIC). tl, t2 are irrelevant in this case.
Finally, the fifth query list is always matched. Thus, if none of the first four query lists match, then a5 will
be executed.t3

41

3.8.4 The IF Construct

The if-construct of Vienna Fortran includes the Fortran statements

• logical_if_statement

• block_if_statement

• else_if_statement

all of which are based upon a generalized logical expression. A generalized logical expression is a Fortran
logical_expression, which, in addition may contain references to the intrinsic functions IDT and IDTA. These

functions perform a test of the distribution types associated with their arguments and, optionally, of the

processor sections to which the arguments are distributed; they yield a logical value. We now describe their
meaning.

IDT is an acronym for "Identical Distribution Types". A reference to IDT has the form

IDT(A[, dim], q)

where A denotes an array, the optional argument dim a dimension of A, and q is a query without a name
lag. (see Section 3.8.3).

The reference is evaluated as follows: First, t is determined as the type associated with the distribution

extraction = A.dim or -- A, depending on whether or not dim is specified (see Section 3.4.4). The reference
to IDT yields true iff t and q match according to the rules specified in Section 3.8.3.

Example 18 IF Construct

REAL BI(M),B2(N),B3(N,N) DYNAMIC

DISTRIBUTE El...

DISTRIBUTE B2...

DISTRIBUTE B3...

:=:

i

IF (IDT(B2,(BLOCK))) THEN

al

ELSE IF (IDT(B2,(CYCLIC))) THEN
a2

ELSE IF (/DT(B2, CYCLIC(*)))) THEN
a3

ELSE

a4

END IF

IF (IDT(B3,(BLOCK, CYCLIC(*))) .AND. (X .LT.Y)

.AND..NOT. (/DT(B2, INDIRECT(*))))
a3

END IF

42

The first IF statement has the same effect as the first dcase construct used in Example 17.[3

IDTA is an acronym for "Identical Distribution Types of Arrays" and provides a special syntax for the

case where the distribution types of two arrays are compared. A reference to IDTA has the form

IDTA(Ax [, dlmx], A=[, dim2])

where A1 and A2 denote arrays, and dim, and dim2 are optional arguments denoting a dimension of

the associated array. The effect of a reference IDTA(Al[,diml],A2[,dim2]) is equivalent to the effect of

IDT(A1 [, dima], (= A2[.dirn2])).

3.9 Allocatable Arrays

3.9.1 Syntax

1. allocatable-array-declarator _ array_name "(" deferred-shape-spec-list ")" allocatable-attribute

2. deferred-shape-spec --, '....

3. allocatable-attribute --_ ALLOCATABLE

4. allocatable-array-annotation ---* actual-array-annotation

5. allocate-statement ---, ALLOCATE"("allocation-list")"

6. allocation _ array_declarator

7. deallocate-statement ---* DEALLOCATE "(" array_name-list")"

3.9.2 Semantics

An allocatable array is an array declared with the allocatable.attribute, which is written as ALLOCATABLE.

The declaration of an allocatable array defines the rank of the array, but not its index domain, by a deferred-

shape-spec-lis[which contains exactly one colon for each dimension. For example, an allocatable array A of
rank 2 can be declared in tile form

REAL A(:,:) ALLOCATABLE

The declaration of an allocatable array may be associated with an actual array annotation.

A static array annotation introduces a statically distributed array. The annotation is evaluated at the
time the declaration is evaluated; the resulting distribution type and processor reference are associated with

every allocation instance of that array, and must remain invariant within an allocation instance.

A dynamic array annotation designates the allocatable array as dynamically distributed. If a range
attribute or an initial distribution is specified, then the associated distribution expressions are evaluated

each time an allocation instance is created for the array.

An allocation instance for an allocatable array is created by an allocate-statement, and terminated by a
deallocate-statement The allocate statement has the form:

ALLOCATE (adl , . . . , adr)

where all adi are array_declarators, excluding assumed size array declarators. At the time the allocate

statement is executed, the values of the lower and upper bound expressions in each array declarator determine

the index domain for the allocation instance of the associated array. The allocation status of each array

changes from deallocated to allocated. A subsequent redefinition or undefinition of any entities in the
bound expressions does not affect the index domain.

43

Theexecutionof theallocatestatement for an array A results in the association of A with a distribution

iff either A is statically distributed, or A is dynamically distributed, with an initial distribution specified in
the declaration.

The deallocate statement has the form

DEALLOCATE (A1,..., Am)

where the A_ are array names associated with allocatable arrays. At the time of execution of the deallocate

statement, all arrays Ai must have the allocation status allocated. The effect of the execution of the

deallocate statement is the termination of the allocation instance associated with each of the Ai; their
allocation status becomes deallocated.

3.10 Procedures

3.10.1 Syntax

1. dummy-array-annotation
inherit-annotation

2.

3.

4.

5.

---* actual-array-annotation [dummy-annotation-attribute]... I

inherit-annotation ---* DIST "(.... *" ")" ["," distribution-range]

dummy-annotation-attribute _ restore-attribute I nocopy-attribute I notransfer-attribute

restore-attribute ---* RESTORE

nocopy-attribute ---* NOCOPY

3.10.2 Semantics

The dummy array arguments in a procedure can be distributed in a manner similar to actual arrays so as to

specify how the arrays will be viewed and accessed within the procedure. In addition, local arrays may either

be distributed explicitly or aligned with a dummy argument. While Vienna Fortran usually accesses dummy

array arguments by the standard Fortran call-by-reference paradigm, there are situations (e.g. when an array

section is transferred and redistributed) in which a copy in/copy out semantics must be adopted. It is also
adopted in any situation where there is not enough information to decide whether reference transmission is

semantically valid. The user may override this by specifying the noeopy attribute, as described below.

Any activation of a procedure q implicitly transfers the whole set of processors to that procedure. If a

processor declaration occurs in the specification part of q, then:

1. For any processor array R that is specified by an assumed shape array declarator of rank n, a processor

array R' of rank n must be uniquely determined in the calling procedure. The shape of R is defined

by the shape of R'.

2. If a processor array R is specified by an adjustable array declarator of rank n, then either a processor

array, R', of rank n, which determines its shape, must be uniquely determined in the calling procedure,
or R is uniquely defined as a reshape of another specified processor array R II whose shape is known.

The rules governing the declaration and use of dummy arguments in a procedure are specified below:

1. All actual array annotations as described in Section 3 can be used, with the same semantics. Their

scope is limited to the procedure.

44

.

.

.

.

.

.

If the dummy argument has a static distribution then this distribution is enforced upon procedure
entry, i.e., the array may have to be redistributed to match the specified distribution. If the actual

argument is also statically distributed, and the corresponding dummy argument has been redistributed

at procedure entry, then the original distribution is restored on procedure exit. If the actual argument
is dynamically distributed, then no such restoration is required. Restoration of the original distribution

can always be enforced by using the restore attribute specified by the keyword RESTORE, either in

the dummy argument annotation or with the actual argument at the point of the procedure call.

If the dummy argument is declared as dynamically distributed and no initial distribution is given,

then its distribution upon procedure entry is defined by the distribution of the actual argument (which

may be undefined). If an initial distribution is specified, then as in the case of statically distributed

dummy arguments, a redistribution may be required to enforce this initial distribution. A dynamically

distributed dummy argument may be a target of an explicit distribute statement within the procedure.

The original distribution is restored if the actual argument is statically distributed or if the restore
attribute has been specified.

For dummy arguments which are either statically distributed or dynamically distributed with an initial

distribution, a notransfer attribute (using the keyword NOTRANSFER) can be specified with the
associated dummy array annotation. In such a situation, if a redistribution is required at procedure

entry, then only the access function is changed and the elements of the array are not physically moved.

This attribute is useful when the values of the dummy argument are first going to be defined in the

procedure before being used. It is also appropriate if a dynamically distributed array has not been

distributed before the procedure call.

A noeopy attribute can be attached to the declaration of a dummy argument to suppress the generation
of a procedure-local copy of the dummy array.Ifi this case, the argument transmission isby reference,

i.e., the actual argument is directly accessed within the procedure. For statically distributed dummy

arguments, it is an error if the distributions of the actual and the dummy argument are not identical.

For dynamically distributed dummy arguments the actual argument may not be statically distributed.

Note that a restore attribute is not permitted with the nocopy attribute. The nocopy attribute is specified

by the keyword NOCOPY.

In addition to ttle explicit distributions described above, a dummy argument may inherit the distri-

bution of the corresponding actual argument. This can be specified using the annotation DIST(*)

with the declaration. The corresponding actual argument may have different distributions on different
call statements and no implicit redistribution takes place on procedure entry. The set of all possible

argument distributions can be specified by an optionM distribution range attribute as used in the dy-

namic array annotation. A dummy argument which inherits its distribution may not be a target of a
distribute statement even if the corresponding actual argument is dynamically distributed.

If an actual argument is dynamically distributed and is a member of a connect set, the association
is temporarily "disconnected" during the execution of the procedure. The connection is "restored"

on exit from the routine. That is, if the actual argument was a secondary array, it may have to be

redistributed to reestablish its alignment with the primary array. If the actual argument was a primary

array and if it has a different distribution before and after the call, then the associated secondary arrays
have to be redistributed after exit from the routine to maintain the connection.

The fundamental issue here is that the declarations within a procedure provide a local view of the arrays

which is independent of the distribution of the actual argument. That is, every reference to the array locally

within the procedure is interpreted according to the local declaration. Thus if a dummy array is declared
with a static distribution then it cannot be a target of a distribute statement within the procedure even

if the actual argument has been dynamically distributed in the calling procedure. Similarly, if a dummy

45

Actual Argument

Dummy Argument

Static 1

Static + restore 1

Static + nolransfer 4

Static + notransfer
+ restore 4

Static + nocopy 7

, 8

Static Dynamic Dynamic Dynamic
+

restore (undistributed)

2 1 3

1 1 Error

5 4 6

4 4 Error

7 7 Error

8 8 Error

1: Redistribute on entry if necessary to match local declaration and restore original distri-
bution on ezil.

2: Redistribute on entry (if necessary), no redistribution on ezit.

3: Distribute on entry to match dummy argument but do not restore on exit.

4: Redistribute on entry (if necessary) without moving data values and restore distribution

on eait (including the moving of data values).

5: Redistribute on entry (if necessary) without moving data values, no redistribution on exit.

6: Distribute on entry without moving data values, no redistribution on exit.

7: Error if distributions of dummy and actual arguments are not identical. No redistribu-

tions required.

8: No redistribution on entry or exit. Dummy argument cannot be a target of a distribute
statement.

Note: "Static" and "Dynamic" denote arguments which are declared with static and dynamic

distributions respectively.

Table 1: Actions on procedure entry and exit: Statically distributed dummy arguments

F

46

Actual Argument Static

Dummy Argument

Dynamic 1

Dynamic + restore 1

Dynamic + notransfer 4

Dynamic + notransfer
+ restore 4

Dynamic + nocopy Error

Dynamic Dynamic Dynamic
+

restore (undistributed)

2 1 3

Error

4 6

4 4 Error

2 1 3

1: Redistribute on entry if necessary to match the initial distribution of the dummy argu-
ment and restore distribution on exit.

2: Redistribute on entry (if necessary), no redistribution on exit.

3: Distribute on entry (if necessary), no redistribution on exit. Error if dummy argument
is not distributed before use.

4: Redistribute on entry (if needed) without moving data values and restore distribution on
exit.

5: Redistribute on entry (if needed) without moving data values, no redistribution on exit.

6: Distribute on entry (if necessary) without moving data values, no redistribution on exit.

Error if dummy argument is not distributed before use.

Note: "Static" and "Dynamic" denote arguments which are declared with static and dynamic

distributions respectively.

Table 2: Actions on procedure entry and exit: Dynamically distributed dummy arguments

47

array is declared to be dynamically distributed then it can be redistributed locally even if the actual array
is statically distributed. The original distribution is restored according to the above stated rules.

Tables 1 and 2 provide a detailed picture of the actions to be taken on procedure entry and exit for various

combinations of actual and dummy argument declarations. The columns specify the possible actual argument
attributes while the rows detail the dummy argument attributes. Note that an actual argument which is

static does not need a restore attribute since the semantics of the language require that the distribution of
the array be the same before and after the procedure call. The last column denotes the situation in which

the actual argument is dynamic and has not been distributed before the procedure call.

Table 1 gives the associated actions for dummy arguments with static distributions while Table 2 is for

dynamic dummy arguments. Note that the notransfer attribute holds meaning for a dynamic distribution

only when it is supplied with an initial distribution.

Example 19 Array arguments

A number of different _'ituations may arise in conjunction with the transfer of distributed arrays to pro-
cedures. Some of these are exemplified in the following code fragment:

PARAMETER (N--2000)

REAL A(N) DIST (CYCLIC)

REAL B(N) DIST (CYCLIC)

REAL C(N) DYNAMIC

CALL SUB(N,A,B,C)

SUBROUTINE SUB(N,AI,BI,CI)

REAL At(N) DIST (*)

REAL BI(N) DIST (BLOCK)
REAL CI(N) DIST (BLOCK) NOTRANSFER

REAL DI(100) DIST (=A1)

INTEGER El(500) DIST (BLOCK)

Here, array A1 inherits the distribution of array A; it is not copied. Upon entry to the procedure, array B
must be redistributed: since B is statically distributed, the original distribution must be restored when the

procedure is exited. The dynamically distributed array C is the actual argument of the (statically distributed)
dummy argument C1: if C has does not have a block distribution, it is redistributed on entry but no actual

values are transferred. There is no redistribution on exit, so C will subsequently have a block distribution. If

a restore attribute had been specified in the subroutine call as follows:

CALL SUB(N,A,B,C:: RESTORE)

or in the declaration of C1 as follows:

REAL CI(N) DIST (BLOCK) NOTRANSFER, RESTORE

then the distribution of C before the call would be restored.

The distribution type of the local variable D1 is extracted from the distribution of the dummy argument

AI, and will thus be CYCLIC in this incarnation of the procedure. Local array El, in contrast, will always
have a block distribution. []

48

3.11 Common Blocks

Commonblockspermitdifferentprogramunits within a Fortran program to define and reference the same

data without using arguments. They also allow the sharing of storage units across program units. The
association of variables and arrays in separate instances of a common block is by storage rather than by

name based on a storage sequence defined for common blocks.

In Vienna Fortran, the user may retain the FORTRAN 77 semantics for common blocks by not distributing

any of the objects in any common block with that name in any program unit. In this case, the common

block storage sequence and association mechanism is maintained. Further, any object in the program's data

space which is not explicitly distributed may be equivalence associated with an area of such a common block

according to FORTRAN 77 rules.

However, Vienna Fortran also permits explicit distribution of arrays within named common blocks with

the following restrictions and modification of the common block storage concept. Note that objects in blank

common are not allowed to be distributed, thus, following sequential FOItTRAN 77 semantics.
Individual arrays in a common block may be distributed explicitly to processors in the same way as other

arrays by declaring them with a distribution annotation. However, such arrays are allowed to be distributed

statically only. Also, following Fortran 90, arrays in common blocks may not be allocatable.

Objects in a common block which are not explicitly distributed are replicated across the processors. A

sequence of such entities in a common block is called a replicated section of the common block.

Thus, a named common block consists of a set of replicated sections which may be interspersed with

distributed arrays. Common blocks with the same name must have the same sequence of replicated sections

and distributed objects. This provides an association between the replicated sections and distributed objects
across the different occurrences of the same common block.

If one or more arrays in a common block are exp]icitly distributed, then the common block storage

sequence as a whole is not maintained. That is, the storage allocated on a processor for a common block
may or may not be contiguous. However, the size of corresponding replicated sections in all common blocks

with the same name must be the same and the usual common block storage sequence holds within it.

Similarly, corresponding distributed arrays in all the common blocks with the same name have the

following restrictions. They must be of the same size and their types must require the same storage units.

Such arrays must be explicitly distributed in each program unit in which the common block is specified.

However, along with the usual static distribution annotations, arrays in common blocks can inherit the
distribution. This can be done by specifying DIST(*) as the distribution in a manner similar to that used

for dummy arguments (see Section 3.10). When using such an implicit distribution, at least one program
unit in which the common block occurs must have an explicit static distribution specified for the distributed

array. This then becomes the distribution of all the corresponding distributed arrays.
When explicit distribution annotations are specified in more than one location for corresponding dis-

tributed arrays, then the distribution specification, the rank and the shape of all the specifications must

agree.
Equivalence association with other data objects is permitted only for data within a replicated section of

a common block. Following FORTRAN 77, it may extend beyond that replicated section only if the replicated
section occurs at the end of the common block. Data objects associated with storage space in a replicated

section may not be themselves distributed.

Example 20 Common block usage
The first common block, shown below, does not contain any data ez'plicilly distributed by the user. As a

consequence, the data in common blocks with the same name may be used in the usual FORTRAN 77 manner.

C

PROGRAM MAIN

COMMON /COM1/X, Y(12), B(12,30), A, AZ, AX
NONE OF THESE ITEMS ARE DECLARED

49

In contrast, several objects in the following common block are explicitly distributed:

PROGRAM MAIN

REAL A(12) DIST(BLOCK)

REAL B(4,5) DIST(CYCLIC,:)
,..

COMMON /COM2/CC, DD, EE, FF, GG, HH, A, B

Arrays A and B are distributed explicitly and thus determine the distribution of these two storage areas

in the common block. The variables in the common block before them comprise a replicated section of the

common block and they will be stored contiguously. In a subroutine of the same program, a common block

with the same name may be declared with:

C

REAL S(4,3) DIST(*)

REAL T(2,5,2) DIST(*)

THIS IS PERMITTED

COMMON /COIVI2/R(6), S(4,3),T(2,5,2)

The array R is not declared separately in the subprogram; it will be associated with the six variables of the

replicated section above. The arrays S and T are declared such that they inherit their distributions from the

distributed common objects, named A and B above, respectively, with whom they are associated by storage.

However, the following declaration of/COM2/in a subroutine is not permitted:

REAL E(6) DIST(BLOCK)

REAL Z(2, 5, 2) DIST(:, CYCLIC,:)

C THIS IS NOT PERMITTED

COMMON /COM2/E, X(8), V(4), Z

Here, the replicated section of COM2 has been associated with an explicitly distributed object. Secondly,

an attempt has been made to associate both arrays X and Y with the first distributed common object. Finally,

the second distributed common object of COM2 is redistributed by the explicit distribution of array Z. All

three manipulations are not permitted. []

Equivalence Association

No distributed array may be associated by equivalence with any other distributed object.
associated is permitted between replicated data only.

Equivalence

5O

4

4.1

1.

2,

3,

4.

5.

6.

7.

8.

9,

10.

11.

12.

13.

14.

15,

4.2

FORALL Loops

Syntax

forall-loop --* forall-statement private-var-decls foralt-block end-forall

forall-statement --, label-forall-statement I nonlabel-forall-statement

label-forall-statement -_ [forall-construct-name ":"] FORALL label forall-control

nonlabel-forall-statement --* [forall-construct-name ":"] FORALL forall-control

forall-control --* (control-variable I "(" control-variable-list ")") [on-clause]

control-variable --_ variable_name "-" integer_expr "," integer_expr ["," integer_expr]

on-clause --* ON processor-element-name

processor-reference --, OWNER "(" array_element_name ")" I processor-element-name

private-var-decls _ dimension_statement [type_statement

forall-block ---, allocate-statement [deallocate-statement [reduction-statement I executable_statement

end-forall _ end-forall-statement] continue_statement

end-forall-statement _ END FORALL [forall-construct-name]

reduction-statement -* REDUCE "(" reduction-op "," variable "," expression ["," order] ")"

reduction-op--* SUM I MULl: I MAX I MIN I function-name

order---* LEFT I RIGHT [TREE

Semantics

As another extension to Fortran, Vienna Fortran supports explicitly parallel loops called forall-loops. This
kind of loop allows the user to assert that the different instantiations of the loop body are independent and

can be logically executed in parallel. To ensure such independence, forall loops are not allowed to have any

(read-write) inter-iteration dependencies. That is, a data item written in one iteration cannot be read or
written in any other iteration. Given this restriction, the program can then execute the iterations in any

order. Note that the same data item can be read by two iterations.

The form of the simple forall loop header is as follows:

FORALL [labe_ variable_name = integer_expr, integer_expr [, integer_expr]

This is the same as the FORTRAN 77 do loop header except we restrict the initial, termination and
increment expressions to be of type integer. Also, as in the Fortran 90 do construct, Vienna Fortran allows

a block format forall loop which uses an END FORALL statement instead of a label to specify the end of

the loop.

There is an implied synchronization at the beginning and the end of a forall loop. That is, all processors
executing the iterations of the loop synchronize before the start of the loop. Similarly, they all synchronize

at the end of the loop before continuing with the execution of the statements after the loop. The compiler

can optimize the code by removing redundant synchronizations as long as the semantics is maintained.

51

Example 21 Forall loop with indirect reference

Forall loops are particularly useful in situations where the compiler cannot detect the data independence

o/loop iterations. For e_ample, in the code segment shown below an index array, X, is used to assign values
to another array, A.

10

FORALL i0 1 = i,N

A(X(I))

CONTINUE

Here, if the values of the array X are unique then the execution of the iterations will not create a write-write

conflict. However, since the compiler cannot check this, the user by specifying a forall loop instead of a do

loop asserts that the iterations are in/act independent. Forall loops whose iterations are not independent are
illegal and the results from ezecuting such programs are undefined. Note that a data item assigned within a

loop iteration can legally be accessed within the same loop iteration before and after the assignment resulting
in its old and new value respectively. []

The loop body of a fora]l loop may access data items non-local to the processor on which it is executing.

Since the execution of an itcration cannot change data items used by any other iteration, any non-local data

items used by an iteration can be gathered before the start of the iteration. That is, any communication

required for accessing data items owned by other processors can be performed before the forall loop. Similarly,
non-local data items assigned by an iteration can all be communicated back to the processors that own them

at the end of the iteration, This allows the compiler to optimize the communication required for the loop
by overlapping communication with computation and also by combining messages between two processors
arising from different loop iterations•

Private Variables

Vienna Fortran allows private variables in forall loops. The declaration of the variables follows the loop

header and precedes any executable statement. The scope of the private variables is the forall loop in which

they are declared and semantically each iteration gets its own copy of the declared variables. Thus, a private

variable is undefined at the start of each iteration and is not accessible outside the loop. If the name of a

private variable is the same as a name declared outside the forall loop, the local declaration hides the outer
declaration till the end of tile loop.

Private variables can be scalars or arrays including allocatable arrays. However, no common blocks can
be declared within a forall loop. Distribution annotations are not allowed with such declarations since the

variables are private to an iteration and hence will be allocated on a single processor.

Example 22 Private Variables in a Forall loop

10

FORALL I = 1, N

INTEGER K

REAL X(100)

DO 10K = 1, 100
X(K)

CONTINUE

END FORALL

52

L

In the above code segment, K and X are declared private to the foratl loop. Logically there are N copies of

the integer K and the array X, one for each iteration of the loop. Thus, assignments to such variables does

not cause inter-iteration dependences as would be the case if, for ezample in the above code, K was declared

outside the loop. Since the local variables are defined within each iteration, the compiler can optimize storage

by reusing space for local variables where possible. For ezample, if the above forall loop is to be ezecuted on

$NP processors, then instead of N locations, the compiler can allocate only $NP storage locations (one per

processor) for the integer K.o

Loop Body

The loop body of a forall loop can consist of any legal FORTRAN 77 executable statement as long as the

restriction on no read-write inter-iteration dependences is observed. This includes the allocate and deallocate
statements discussed in Section 3.9 and the reduction statement discussed in the next subsection 4.4 below.

As in the case of FORTRAN 77 do loops, none of the statements in the loop body of a forall loop may be

the target of a branch from outside of that body. However, unlike FORTRAN 77, control cannot be transferred

from within the loop to outside the loop. Also, procedures called from within a forall loop body are restricted
in the following way. FORTRAN 77 allows sequence association in that an array dummy argument can be

associated with an actual argument which is a single array element. Vienna Fortran does not allow this,

thus forcing array dummy arguments to be associated with actual array arguments only. Note that this

restriction is placed only on procedures called from forall loops and prevents such procedures from accessing

array elements which are not explicitly passed to it.

Nested forall loops can be used to specify multiple levels of parallelism. At this point, Vienna Fortran

allows only tightly nested forall loops and provides special syntax to combine the loop control variables into

a single header.

Example 23 Nested Forall Loops

PROCESSORS P(PN, PN)

REAL A(N, M) DIST (BLOCK, BLOCK)

FORALL (I = 1, N, J = 1, M, 2)
A(I,J) = ...

END FORALL

The above code segment specifies a doubly nested forall loop of N ,((M + 1) + 2) iterations where I ranges

from 1 to N while J ranges from 1 to M by 2. []

4.3 Work Distribution

The compiler, by default, assigns loop iterations to processors for execution. The strategy for such distribu-
tion of work could be as simple as assigning a block of iterations to a processor. A more efficient approach

would result from analyzing the array access patterns of the loop body and then assigning iterations to

processors so as to minimize communication while attempting to balance the load. This assignment of work

could be at the iteration level, i.e., assign full iterations to a single processor, or if necessary the compiler

may choose to break up a single iteration across multiple processors.

Following Kali [26], Vienna Fortran allows users to control the assignment of work to processors. This

can be done through the optional on clause specified in the forall loop header. The on clause consists of the
keyword ON followed by a processor element name as shown in the example below:

53

FORALLI = 1,N ONOWNER(A(I))

END FORALL

Here the on clause is specified using the intrinsic function, OWNER, which returns the home processor of
its argument. Thus, the above on clause specifies that the Ith iteration of the forall loop should be executed

on the processor which owns the array element A(I). If an array is replicated across several processors, then

the intrinsic function OWNER returns a system specific result.

Although, the above example is the most common use of the on clause, it is also possible to name the

processor directly, as shown below:

FORALL I = 1, SNP ON SP(I)

In this case, the on clause is specified using the implicit processor array SP. The number of iterations is the

same as the number of processors (SNP), with the Ith iteration being assigned to the/th processor. Thus,
the on clause can be used, as shown above, to specify processor specific code.

4.4 Reduction Operators

As indicated before, forall loops in Vienna Fortran are not allowed to have inter-iteration dependencies. One

consequence of this restriction is that no scalar variable can be modified in a forall loop. Vienna Fortran

allows reduction operators to represent operations such as summation across the iterations of a parallel loop.
The form of the reduction statement is as follows:

REDUCE (reduction-op, variable, ezpression [, order])

It consists of a reduction operator, a target variable and a expression to be accumulated onto the target

variable. The effect of the statement is to accumulate the values of the expression arising out of the different

loop iterations onto the target variable. The order in which the reduction occurs may be left to the system

or as in SISAL [24], it may be explicitly specified to be LEFT, RIGHT or TREE order.

Example 24 Summing values of a distributed array

10

X=0.0

FORALL 10 I = 1, N ON OWNER(A(I))
0 . .

REDUCE(ADD, X, A(I))
. ..

CONTINUE

In this loop, the reduction statement along with the reduction operator ADD is used to sum the values of the

distributed array A onto the variable X. n

Along with ADD, Vienna Fortran provides MULT, MAX, and MIN as reduction operators. A user
defined function can be used as a reduction operator as follows:

REDUCE (rune, X, A(I))

54

wherefunc is a user defined function with two input arguments. The semantics of the above statement are

as follows: the function func is called with X and A(I) as arguments and the result is assigned as the new

value of X. The functions used as reduction operators must be commutative and associative (within the

constraints of floating point operations) for consistent results.
Note that the final value of the variable being used as the target of the reduction is not available until

the end of the forall loop, and hence cannot be referenced on the right hand side in another statement in

the same loop. However, the same variable can be used as a target of multiple reduction statements within

the same loop as long as the same reduction operator is used in all cases.

55

5 Specification of Distribution and Alignment Functions

Vienna Fortran provides a facility for the explicit specification of distribution functions and alignment func-
tions, thereby allowing the user to extend the set of intrinsic functions defined in the language. The speci-

fication of a distribution function introduces a class of distribution types by establishing mappings from
(data) arrays to processor arrays, while an alignment function determines a class of mappings from source

arrays to target arrays, each of which constitutes an alignment in the sense of Section 2.4.

Distribution functions and alignment functions both are not functions in the ordinary FORTRAN 77 sense

in that their activation results in the computation of a distribution or alignment, respectively, rather than

in the computation of a (scalar) value. Apart from this, no side effects may occur as a result of executing
these functions.

5.1 Specification of Distribution Functions

5.1.1 Syntax

1. dfunction-statement ---, DFUNCTION dfunction-name ["("[dummy-argument-list]")"]

2. dummy-argument ---, variable_name I array_name I procedure_name

3. target-array-specification ---, TARGET generalized-array-declarator

4. processor-array-specification _ PROCS generalized-array-declarator

5. distribution-mapping-statement ---, distribution-index-mapping [distribution-dimension-mapping

6. distribution-index-mapping ---, data-reference DIST ["("distribution-expression")"]
TO processor-reference

7. distribution-dimension-mapping ---, array-dimension DIST ["("distribution-function-reference")"]
TO processor-dimension

8. processor-dimension ---, array-dimension

9. end-dfunction-statement _ END DFUNCTION [dfunction-name]

5.1.2 Semantics

Distribution functions are specified similar to function_subprograms:

DFUNCTION f [(dl,...,d_)]
specification_statements

e_eculabie_siatements

END DFUNCTION if]

where

• f is tile function name

• (dx,..., dk) is an optional list of explicit dummy arguments (k > 0). Their specification and use

is governed by standard Fortran rules. If no explicit dummy arguments are specified, the parentheses
can be omitted.

56

i?:

• In additionto explicitdummyarguments,eachdistributionfunctionhastwoimplicit dummy ar-
guments,whichrespectivelyareassociatedwiththearrayto bedistributed(thetarget array), and
theprocessorarraywhichis thetargetof thedistribution.
Weillustratetheassociationbetweentheimplicitdummyargumentsof adistributionfunctionf and
the corresponding actual arguments by an example: consider the annotated static array declaration

REAL AI(N, M), A2(N,N), A3(M,N) DIST(f(K)) TO R2

The evaluation of this declaration results in three successive calls to f:

f(K){A1, R2}

f(K){A2, R2}

f(K){A3, R2}

Here, the implicit actual arguments are enclosed between set brackets.

• The specification_statements must include a target-array-specification for the implicit dummy array

argument, A, and a processor-array-specifcation for the implicit dummy processor array argument, R.
These two specifications begin with the keyword TARGET or PROCS, respectively, followed by a

generalized-array-declarator (see Section 3.1.2). If n and m are permissible ranks of the actual argu-
ments associated with A and R, respectively, then f is designated as an n-m distribution function.

If the rank of both implicit dummy arguments is specified as 1 and a reference to f occurs in a

composite distribution expression, then the function performs a mapping from one array dimension to

one processor array dimension, as specified in Section 3.4.7.

A processor-declaration may or may not be included, following the general rules discussed in sections
3.2 and 3.10.

* The set of executable_statements includes a distribution-mapping-statement, which is used to explicitly

specify the components of a distribution, either element-wise or dimension-wise. The method used to
specify the mapping is discussed in detail below.

Apart from their use in distribution mapping statements, elements of A may neither be referenced nor
defined in the distribution function.

• A reference to a distribution function must explicitly specify for each index of the target array how

the corresponding element is to be mapped to a non-empty set of processors. More precisely, for each

i E I a, a mapping from i to a non-empty set of processor indices must be explicitly specified by the
application of distribution mapping statements. This yields a distribution for A with respect to R.

Distribution Mapping Statements

Distribution mapping statements are used to specify components of the distribution 6_ that is to be computed
by an activation of the distribution function. Distribution mapping statements fall into two categories -

distribution-indez-mappings and distribution-dimension-mappings - depending on whether they are element-
oriented or dimension-orie_ted:

• The distribution-index-mapping statement has the form:

dref DXST TO vref

57

wheredref is a data reference associated with A - i.e., either a single array element or an array
section, dex is an optionM parenthesized distribution expression, consisting only of distribution function

references and elision symbols, and pref is a processor reference - i.e., either a single processor or a
processor array section (see Section 3.1). Let I denote the set of index values associated with dref, and
J the corresponding set associated with pref. Then I C I A , and J C_I n.

Assume first that dex is not specified. Then the effect of the index mapping is as follows:

Vi • I : Vj • J :j is included in _(i)

If dex is specified, then drefis mapped to prefaccording to the definitions of the distribution functions

referenced, and to the rules specified in Sections 3.4.6 and 3.4.7.

• The distribution-dimension-mapping statement is of the form:

A.dl DIST [(drcf)] TO R.d2

where dl and d2 are dimension qualifiers for A and R, respectively, and dref is a reference to a 1-1

distribution function. In this case, dref specifies the distribution of dimension dl of A by mapping it
to dimension d2 of R.

5.1.3 Examples

Example 25 Specification of a variant of block distributions

This function specifies an alternative to the intrinsic function BLOCK (see Section 3.4.3). It partitions the

target array (dimension) into a number of contiguous intervals of the same size, possibly followed by one

interval of a smaller size. There may be one or more processors that do not receive any elements of the
array.

DFUNCTION BLOCK1

TARGET D(O:)

PROCS P(0:)

INTEGER LBL0, LBL1, UBD

LBL0 = SIZE(D) / SIZE(P)

LBL1 = SIZE(D) / SIZE(P) + 1

UBD = MIN(SIZE(P), SIZE(D))- 1

IF(LBL0 * SIZE(P).EQ. SIZE(D)) THEN
DO llJ = 0, UBD

D(J*LBL0 : (J+I)*LBL0- 1) DIST TO P(J)
11 CONTINUE

ELSE

DO 22J =0, UBD

D(J*LBL1 : MIN(UBOUND(D,1), (J+I)*LBL1 - 1) DIST TO P(J)
22 CONTINUE

END IF

END DFUNCTION BLOCK1

58

Example 26 Specification of the intrinsic function CYCLIC(K)

DFUNCTION CYCLIC(K)

TARGET D(0:)

PROCS P(0:)
INTEGER K,N

11

N= UBOUND(D,1)
DO 11I=O,N,K

D(I: MIN(N, I+K-1)) DIST TO P(MOD(I/K,$NP)
CONTINUE

END DFUNCTION CYCLIC

Example 27 Specification of the intrinsic function INDIRECT

In the distribution function specified below, we assume IC = I A. A and C may be of an arbitrary rank.

DFUNCTION INDIRECT(C)

TARGET h(*)

PROCS P(:)

INTEGER C(*)

11

DO 11 I = 1, SIZE(A)

A(I) DIST TO P(C(I))
CONTINUE

END DFUNCTION INDIRECT

Example 28 Generating rectangular stripes
An array of rank 1 is distributed in k stripes of arbitrary width. The stripe boundaries are given in the

array parameter I: for all 1 < j <_ k, I(j) is the lower bound, and l(j + 1) - 1 is the upper bound of stripej.

DFUNCTION stripes (k,l)

TARGET D(:)

PROCS P(0:)

INTEGER k, l(k+l)

11

DO lljj = 1, k

D(l(jj) : l(jj+l)-l) DIST TO P(MOD(jj,SNP))
CONTINUE

END DFUNCTION stripes

59

Example 29 Generating diagonal stripes

DFUNCTION dstripes

TARGET D(I:,I:)

PROCS P(O:)
INTEGER UB2

UB = uBoUND(D,2)
DO I = 1, UBOUND(D,1)

DO J : 2, UB2

D(I,J) DIST TO P(MOD(I - J + UB2, SNP)
END DO

END DO

END DFUNCTION dstripes

Example 30 Replication of stripes

The kth stripe - which is of length l(k) -is mapped to the processor index range pn(k, 1) : pn(k, 2).

DFUNCTION repstripes (k,l,pn)

TARGET D(:)

PROCS P(:)

INTEGER k, l(k), pn(k,2), lower, upper

lower = LBOUND(D,1)

DO jj = 1, k
upper = lower -I- l(jj)

D(lower : upper-l) DIST TO P(pn(jj,1) : pn(jj,2))
lower = upper

END DO

END DFUNCTION repstripes

Example 31 Cyclic distribution of two dimensions

DFUNCTION bicycle (M,N)

TARGET D(:,:)

PROCS P(:,:)

D.1 DIST CYCLIC(M) TO P.1

D.2 DIST CYCLIC(N) TO P.2

END DFUNCTION bicycle

[]

60

5.2 Specification of Alignment Functions

5.2.1 Syntax

1. afunction-statement _ AFUNCTION afunction-name ["("[dummy-argument-list]")"]

2. source-array-specification _ SOURCE genera|ized-array-dec]arator

3. alignment-mapping-statement _ data-reference ALIGN ["("alignment-function-reference")"] WITH
data-reference

4. end-afunction-statement -* END AFUNCTION [afunction-name]

5.2.2 Semantics

Alignment function specifications specify a class of mapping from a set of target arrays to a set of source
arrays. Virtually all that has been said about distribution functions can be carried over to the discussion

of alignment functions, if the role of the processor reference is replaced by the source array data reference.

Therefore we keep this discussion to a minimum length.

Alignment functions are specified as follows:

AFUNCTION f [(dl,...,dk)]
specification_statements
ezecutable_statements

END AFUNCTION If]

where the notation has the analogous meaning as for distribution functions.

The difference between distribution and alignment functions is as follows: while the two implicit argu-

ments of a distribution function specify the target array to be distributed and the processor array, the two

implicit dummy arguments of an alignment function are the target array, A, and the source array, B, of

an alignment. An activation of f yields an alignment a : I A _ I B.

The specifications of the target and source arrays take respectively the form

and

TARGET generalized-array-declarator

SOURCE generalized-array-declarator

For both specifications, the same rules hold as discussed in Section 3.1.2.

The set of ezecutable_statements includes the alignmenl-mapping-statement. In contrast to the distribution-

mapping-statement, there is only one version of this, which specifies index mapping:

trey ALIGN [(afr)] WITH sref

where

• trefrepresent a target array reference

. aft is an optional alignment function reference

• srefis the source array reference

61

Thesyntaxandsemanticsof this construct are analogous to that specified for the distribution-index-

mapping, with trefsubstituted for the data reference dref, aft playing the role of the distribution expression,
dex, and srefsubstituted for the processor reference pref.

Apart from their use in mapping statements, elements of A and B may neither be referenced nor defined
in the function.

Assume first that afr is not specified. Let I denote the set of index values associated with tref, and J

the corresponding set associated with bref. Then I C_I a, and J C_I B. The effect of the alignment mapping
statement is then as follows:

Vi E I : Vj E J :j is included in a(i)

If an alignment function reference is specified, a mapping is performed as specified by tref, sref, and aft.
See Section 3.5.4 for details.

Example 32 Transposition

AFUNCTION transpose

TARGET T(I:,I:)

SOURCE B(I:,I:)

11

DO 11 I = 1, UBOUND(T,1)

DO 11 J = 1, UBOUND(T,2)

T(I,J) ALIGN WITH B(J,I)
CONTINUE

END AFUNCTION transpose

Example 33 Skewed alignment

The main diagonal of the target array is aligned with the second dimension of the source array.

11

AFUNCTION skewed

TARGET T(I:,I:)

SOURCE B(I:,I:)

DO 11 I = 1, UBOUND(T,1)

DO 11 J = 1, UBOUND(T,2)

T(I,J) ALIGN WITH B(I, UBOUND(B,2)+I-J)
CONTINUE

END AFUNCTION skewed

D

62

6

6.1

1.

.

3.

.

5.

.

7.

o

9.

10.

11.

12.

13.

14.

15.

16.

Concurrent Input/Output Statements

Syntax

concurrent-to-statement _ copen-statement I cclose-statement I cwrite-statement [cread-statement I

cbackarray-sta_ement I cskip-statement I crewind-statement

copen-statement --* COPEN "(" copenitem-list ")"

copenitem _ [UNIT "--"] external-unit-identifier I IOSTAT "=" integer_variable]
El'tit "=" label I FILE "=" (name I character_string) [STATUS "=" ('OLD'I 'NEW') [

FORM "=" (' FORMATTED' i ' UNFORMATTED ')

cclose-statement --_ CCLOSE "(" ccloseitem-list ")"

ccloseitem --* [UNIT "="] external-unit-identifier I IOSTAT "=" integer_variable I

Eitit "=" label I STATUS "=" ('KEEP' ['DELETE')

cwrite-statement --, CWItITE "(" cwriteitem-list ")" array_name-list

cwriteitem ---, [UNIT "="] external-unit-identifier I [EXTDIST "="] SYSTEM I
IOSTAT "=" integer_variable] EItR "=" label

external-unit-identifier --* integer_expr

cread-statement --* CREAD "(" creaditem-list ")" array_name-list

creaditem _ [UNIT "="] external-unit-identifier] END "=" label[IOSTAT "=" integer_variable

I EItR "=" label

cbackarray-statement --* CBACKAitRAY "(" cbackarrayarrayitem-list ")"

cbackarrayitem ---, [UNIT "="] external-unit-identifier I IOSTAT "=" integer_variable I
Eitit "=" label

cskip-statement _ CSKIP "(" cskipitem-list ")"

cskipitem _ [UNIT "="] external-unit-identifier] ([AR.ItN "="] ("*" I integer_expression)

IOSTAT "=" integer_variable I ERR "=" label)

crewind-statement --_ CitEWIND "(" crevitem-list ")"

revlist-item --* [UNIT "="] external-unit-identifier I IOSTAT "=" integer_variable 1
EitR "=" label

6.2 Semantics

In this section, we describe the file operations provided by Vienna Fortran for input/output of distributed

data structures to a concurrent file system These operations are in addition to the usual FORTRAN 77 file

operations which can be utilized for input and output of scalar and replicated data.
We presume that the underlying machine supports a concurrent file system, e.g., CFS on the Intel parallel

machines, which allows files to be stored and accessed in parallel. The system may include a set of I/O nodes

each of which controls one or more disks. The I/O nodes are part of the communication subsystem of the

machine which supports simultaneous parallel access to the disk drives by the processors. We presume that

the actual mapping of a file to physical blocks on the set of disks is handled by the communication subsystem,
for example, by striping the file across the disks.

63

Thecommunicationsubsystemshouldallowthesameconcurrentfileto beopenedandreadbyanumber
of differentprocesseswhereeachprocessmaintainsits ownfilepointerandis not affectedby anyof the
otherprocesses.Thisallowseachprocessto beresponsiblefor the input/outputof its localsegmentof a
distributeddatastructure.

A ViennaFortranconcurrentfilehasaspecialstructureandcanbeopenedandaccessedonlythrough
theoperationsdescribedbelow.Suchafile consistsof asequenceofrecords;eachrecordcontainsanarray
distributiondescriptorfollowedbydataelementsof thearray.Thedistributiondescriptorcontainsenough
informationto regeneratethedatadistributionfor thearray.

TheViennaFortranconcurrentI/O statementsdescribedbeloware considered to be executed syn-
chronously. That is, all processors execute each I/O statement and (conceptually) no processor can proceed

until all the processors have completed the execution of the I/O statement.

The simple form of the statement for opening a Vienna Fortran concurrent file is as follows:

COPEN (UNIT = integer_e_:pr, FILE = character_string, STATUS = sta)

This is the same as the FORTRAN 77 open statement except we restrict the set of possible specifiers. COPEN

signals an errorstate if the file with the given name exists but it has been created by a standard FORTRAN 77
open statement.

A CCLOSE statement is used to terminate the connection of a particular file to a unit. The simple
form of this statement is as follows:

CCLOSE (UNIT = integer_expr, STATUS = sta)

In this statement we allow the same set of specifiers as provided by the FOaTRAN 77 close statement.

One or more distributed arrays can be written out to a Vienna Fortran concurrent file by using the
CWRITE statement. There are two forms of the CWttITE statement. The first one is as follows:

CWttITE (UNIT = integer_ezpr) adl, ad2, ..., adr

where adi, 1 < i < r are array identifiers. The file record written for each distributed array, adi, consists

of the distribution descriptor followed by the sequence of all the data elements of adi. This sequence
results from the concatenation of linearized local segments of adi owned by the individual processors. These

segments are concatenated according to the increasing order of logical numbers of the processors that own

the corresponding segmexlts. The logical number of a processor is its index in the default processor array
$P.

The distribution descriptor stores information describing: 1) the distribution type of adi, 2) the index

set of adi, and 3) the index set of the processor array to which the array, ads, is distributed.
The above form of the CWRITE statement is useful and most efficient when the array being written

is going to be read back into a target array with exactly the same distribution. In such a situation, the
local segments of the array structure can be read directly in parallel by all the processors involved. When

these records are read into target arrays whose distribution does not match the distribution used for writing

out the elements, a redistribution through distributed temporary arrays is necessary. If it is known that a

distributed array being output is to be read into an array with a different distribution, we can use the second

form of the CWRITE statement. As shown below, this form specifies that the external distribution used

for writing out the arrays should be a a standard system default distribution:

CWRITE (UNIT = integer_expr, EXTDIST = SYSTEM) adl, ad2, ..., adr

The default system distribution used by Vienna Fortran, is one in which only the last dimension of an array

is distributed by the BLOCK distribution. Using this default distribution, the array elements will always

be written in a sequence that corresponds to the standard FORTRAN 77 array element ordering, independent

of the number of processors executing the statement.

The reading of one or more distributed arrays is specified by a statement of the following form:

64

CREAD(UNIT = integer_ezpr) acll, adz, ..., adr

where adi, 1 < i < r are again array identifiers. The distribution information is read from the file and the

compatibility with the distributions of adi is checked. If necessary, a redistribution through a distributed

temporary array is performed.
There are some restrictions on the use of CREAD and CWRITE statements:

• No mixing of CREAD and CWRITE statements is allowed on an open file.

• CREAD and CWRITE statements can only be applied to files opened by a COPEN statement.

As noted above, parallel access to the distributed files requires each processor executing the Vienna

Fortran program to maintain independent file pointers to the same file. However, conceptually there is a

single logical file pointer which allows all the processors to be working on the same record in the file. The

following operations allow for positioning of the logical file pointer within a distributed file. Given the SPMD

nature of the generated code, each processor executes the same statement, thus maintaining a consistent

position in the file.
Execution of a CBACKARRAY statement causes the file to be positioned before the preceding record.

The simple form of this Statement is as follows:

CBACKARRAY (UNIT = integer_expr)

The statement CSKIP serves either for skipping to the end of file:

CSKIP (UNIT = integer_expr, ARRN = *)

or for skipping forward over records:

CSKIP (UNIT --- integer_expr, ARRN = integer_ezpression)

The number of records skipped is specified by the inleger_ezpression.

Execution of a CREWIND statement

CREWIND (UNIT = integer_expr)

causes the specified file to be positioned at its initial point.

Example 34 Writing and reading arrays.

ASSERT R.GE. 2

PROCESSORS P2D(R,R) RESHAPE PID(R*R)

REAL A(N, N) DIST (BLOCK, BLOCK)
REAL B(N, N) DIST (BLOCK, BLOCK)

REAL V(N*N) DIST (BLOCK) TO P1D

C... initialization of A by some algorithm . . .

COPEN(UNIT = 7, FILE = '/usr/examplel',STATUS ----'NEW')

CWRITE (7) A
CCLOSE (7)

65

COPEN(UNIT = 7, FILE = '/usr/examplel',STATUS = 'OLD')
CREAD (7) B

CBACKARRAY (7)

CREAD (7) V
CCLOSE (7)

If, e.g. R -- 2 and N -- 4, the array A is distributed in the following way.

Segment 1 Segment3

all a12 [a13 a14

l

a21 a22 I a23 a24

Segmentl is owned by P2D(1,1)

Segment2 is owned by P2D(2,1)

a31 a32] a33 a34

[
a41 a42] a43 a44

Segment3 is owned by P2D(I,2)

Segment4 is owned by P2D(2,2)

Segment2 Segment4

The segments are written to the file /usr/examplel in the following order: Linearized Segmentl, Lin-
earized Segment2, Linearized Segment3, Linearized Segment4. Thus, data elements of A appear in the
corresponding file record in the following order: all a21 a12 a22 a31 a41 a32 a42 a13 a23 a14 a24 a33 a43

a34 a44. Since the array B has the same distribution as the array A, the data elements of A are transferred

to B in order, i.e., bij is the same as aij. However, since the array V is one-dimensional, the above elements

of A are transferred to the elements vl, v2, ..., v16 of the array V respectively. D.

Acknowledgments

The work contained in this document has been the subject of a large number of discussions and debates
over the past year; it is impossible to mention all those researchers and applications programmers who have

contributed in some way to the features of this language or who have helped us to understand some of the

issues involved. We would, however, particularly like to thank Marina Chen, Tom Eidson, Mark Furtney,

Michael Gerndt, Irene Qualters, Joel Saltz, John Van Rosendale and the Fortran D group at Rice University

for their helpful comments and discussions. Last, but not least, we would like to thank all the other members
of our research group at the University of Vienna.

=

66

-=

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19:26-34, August 1986.

[2] F. Andre, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data distribution. In Inter-
national Conference on Supercomputing, pages 380-388, June 1990.

[3] ANSI. American National Standard Programming Language FORTRAN 77. Number X3.9-1978. Amer-
ican National Standards Institute, 1978.

[4] S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Proceedings of the SHPCC Conference

1992 (to appear), 1992.

[5] D. Callahan and K. Kennedy" Compiling programs for distributed-memory multiprocessors. Journal of

Supercomputing, 2:15t-169, 1988.

[6] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran (To appear: Scientific

Programming 1992). ICASE Report 92-9, ICASE, Hampton, VA, 1992.

[7] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - A Fortran language extension for distributed

memory systems. In J. Saltz and P. Mehrotra, editors, Languages, Compilers, and Run-time Environ-

merits for Distributed Memory Machines. Elsevier Press, 1992.

[8] M. Chert and J. Li. Optimizing Fortran 90 programs for data motion on massively parallel systems.

Technical Report YALE/DCS/TR-882, Yale University, January 1992.

[9] M. Chen, Y.Choo, and J. Li. Theory and pragmatics of generating efficient parallel code. In Parallel

Functional Languages and Compilers. ACM Press and Addison-Wesley, 1991.

[10] A. L. Cheung and A. P. Reeves. The Paragon multicomputer environment: A first implementation.

Technical Report EE-CEG-89-9, Cornell University, Ithaca, NY, July 1989.

[11] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[12] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D language
specification. Department of Computer Science Rice COMP TR90079, Rice University, March 1991.

[13] H. M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems. PhD thesis,

University of Bonn, December 1989.

[14] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality C* compiler for
hypercube machines. Ill 3rd ACM SIGPLAN Symposium on Principles Practice of Parallel Program-

ming, pages 73-82, April 1991.

[15] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic parallelization system for

distributed memory parallel computers. In Proceedings of the The Fifth Distributed Memory Computing

Conference, pages 1105-1114, Charleston, SC, April 1990.

[16] K. Kennedy and H. Zima. Virtual shared memory for distributed-memory machines. In Proceedings of
the Fourth Conference on Hypercube Concurrent Computers and Applications, March 1989.

[17] C. Koelbel. Compiling Programs for Nonshared Memory Machines. PhD thesis, Purdue University,

West Lafayette, IN, August 1990.

[18] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.

IEEE Transactions on Parallel and Distributed Systems, 2(4):440-451, October 1991.

67

[19]C. Koelbel,P.Mehrotra,andJ.VanRosendale.Semi-automaticprocesspartitioningfor parallelcom-
putation.International Journal of Parallel Programming, 16(5):365-382, 1987.

[20] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on distributed mem-

ory architectures. In 2nd A CM SIGPLAN Symposium on Principles Practice of Parallel Programming,

pages 177-186, March 1990.

[21] J. Li and M. Chen. Generating explicit communication from shared-memory program references. In
Proceedings of Supercomputing '90, pages 885-876, New York, NY, November 1990.

[22] D. Loveman. High Performance Fortran: Proposal. In High Performance Fortran Forum, Houston, TX,
January 1992.

[23] G. I. Marchuk. Methods of Numerical Mathematics. Springer-Verlag, 1975.

[24] J. McGraw, S. Skedzielewski, S. Allan, R. Oldenhoeft, J. Glauert, C. Kirkham, W. Noyce, and

R. Thomas. SISAL: Streams and iteration in a single assignment language: Language reference manual.

Report M-146, Lawrence Livermore National Laboratory, March 1985.

[25] P. Mehrotra. Programming parallel architectures: The BLAZE family of languages. In Proceedings of
the Third SIAM Conference on Parallel Processing for Scientific Computing, pages 289-299, December
1988.

[26] P. Mehr0tra and J. Van Rosendale. Programming distributed memory architectures using Kali. In

A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances in Languages and Compilers for

Parallel Processing, pages 364-384. Pitman/MIT-Press, 1991.

[27] MIMDizer User's Guide, Version 7.02. Pacific Sierra Research Corporation, Placerville, CA., 1991.

[28] E. Paalvast and H. Sips. A high-level language for the description of parallel algorithms. In Proceedings

of Parallel Computing 89, Leyden, Netherlands, August 1989.

[29] E. Paalvast, A. van Gemund, and H. Sips. A method of parallel program generation with an application
to Booster language. In Proceedings of the 4th International Conference on Supercomputing, Amsterdam,
June 1990.

[30] D. Pase. MPP Fortran programming model. In High Performance Fortran Forum, Houston, TX,
January 1992.

[31] D. Pountain. A Tutorial Introduction to Occam Programming. Inmos, Colorado Springs, Co., 1986.

[32] A. P. Reeves. Paragon: a programming paradigm for multicomputer systems. Technical Report EE-
CEG-89-3, Cornell University, January 1989.

[33] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Conference on

Programming Language Design and Implementation, pages 69-80. ACM SIGPLAN, June 1989.

[34] M. Rosing, R. W. Schnabel, and R. P. Weaver. Expressing complex parallel algorithms in DINO.

In Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, and Applications, pages
553-560, 1989.

[35] M. Rosing, R. W. Schnabel, and R. P. Weaver. The DINO parallel programming language. Technical
Report CU-CS-457-90, University of Colorado, Boulder, CO, April 1990.

[36] J. Saltz, H. Berryman, and J. Wu. Runtime compilation for multiprocessors (To appear: Concurrency,

Practice and Experience, 1991). ICASE Report 90-59, ICASE, 1990.

68

[37]J. Saltz, K. Crowley, R. Mirchandaney, and R. Berryman. Run-time scheduling and execution of loops
on message passing machines. Journal of Parallel and Distributed Computing, 8(2):303-312, 1990.

[38] CM Fortran Reference Manual, Version 5._. Thinking Machines Corporation, Cambridge, MA, 1989.

[39] P. S. Tseng. A systolic array programming language. In Proceedings of the Fifth Distributed Memory

Computing Conference, pages 1125-1130, April 1990.

[40] E. Van de Velde. Experiments with multicomputer LU-decomposition. Technical Report Series CRPC-

89-1, California Institute of Technology, April 1989.

[41] M. Wu and G. Fox. Fortran 90D Compiler for distributed memory MIMD parallel computers. Technical

Report SCCS-88b, Syracuse University, 1991.

[42] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parallelization.

Parallel Computing, 6:1-18, 1988.

[43] H. Zima, H. Bast, M. Gerndt, and P. Hoppen. Semi-automatic parallelization of Fortran programs.
In CONPAR 86, Conference on Algorithms and Hardware for Parallel Processing, volume LNCS 237,

pages 287-94. Springer, 1986.

[44] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press Frontier

Series, Addison-Wesley, 1990.

69

A Examples

In this section, we show how Vienna Fortran can be used to express scientific algorithms. In particular,

we present three examples: Gaussian Elimination, ADI iteration, and a sweep over an unstructured mesh.

These examples demonstrate the flexibility and versatility of the language.

A.1 Gaussian Elimination

The Gaussian elimination algorithm is a frequently used method to solve a set of linear equations. It has

been studied extensively and optimized forms of the algorithm are included in some of the major numerical

libraries. Figures 1, 2, and 3, present a version of the algorithm expressed in Vienna Fortran. The code

reproduced here has not been written as a library routine, but is a complete program to find the solution to

a set of equations. The matrix of coefficients for the set of equations to be solved is contained in the array

A while B is the right hand side. Performance Studies of this algorithm on various parallel machines have

indicated that a cyclic column distribution for the matrix A frequently leads to a better overall performance

than a block or cyclic row distribution, and hence is often the preferred choice for its distribution (although

a two-dimensional processor array and a cyclic distribution in both dimensions of A may be superior in some

cases (cf. [40])).

Hence, as shown in Figure 1, the second dimension of A is cyclically distributed across all processors. The
array B is distributed by aligning it with the second dimension of array A; this has the effect of distributing

the elements of B in a round-robin fashion to the processors. The other arrays in the program have the

same distribution, and hence are aligned with B. We could equally well have aligned them with the second

dimension of A or specified a cyclic distribution directly. An advantage of the strategy used here is that, if

we want to test the behavior of this algorithm under different distributions, we need to modify at most the
distribution annotations for arrays A and B. The alignment of the other arrays with B do not need to be

changed.

The program starts by reading in the arrays A and B from a conventional formatted files in the normal
manner. All standard FORTRAN 77 file operations are supported by Vienna Fortran. However, the language

also supports special concurrent file operations to open close, read, write and manipulate concurrent files.

In this program we want to store the results in a concurrent file which must thus be opened by a COPEN
statement. This statement takes the same arguments as the FORTRAN 77 OPEN statement, but it may

be used to open existing files only if they were written with the corresponding concurrent write statement
CWRITE. The concurrent, file containing the program's results may be subsequently read in by another

program using the CREAD statement. The specification SYSTEM used here indicates that the array is
stored in the file system using a default distribution (which may be different from the one used in the

program).
The first subroutine FGA USD, shown in Figure 2, has the task of decomposing the matrix A. We have

chosen to modify the sequential algorithm by expanding the temporary variable used into an array TEMP;

thus each processor has a local variable for the local Columns of A, eliminating unnecessary communica-

tion. Some compilers will be able to recognize that this is being used as a local variable and perform this
transformation automatically. The DO-loop with loop variable J can be executed in parallel in all iterations.

We do not want to redistribute the arrays [n the subroutine, and specify this by using DIST(*). We

could have annotated each of the declarations with DIST(*) also. However, the alignments given explicitly

are equivalent to the distributions in the main program, so no redistribution takes place. If a subroutine is

separately compiledl then it is advantageous to expllcitly specify any alignments which are to hold, as we

have done here, even if the user knows that redistribution will not take place.

The singularity test in the main program uses the function ANY, which returns the value .TRUE. iff

any of the elements of its argument are true. If no singularities are found, execution proceeds with a call to

the subroutine FGA US,q, shown in Figure 3, where the solution step is performed. Here too, all arrays are

used in their original distribution.
Note that only a few changes were made to the sequential program to obtain the above parallel program,

7O

C

10

C

PROGRAM Gauss

PARAMETER (N = 4000)

REAL A(N,N) DIST (:, CYCLIC)

REAL B(N), TEMP(N) DIST(=A.2)
INTEGER IPIVOT(N) DIST (=B)

LOGICAL SING(N) DIST (=B)

COPEN(UNIT = 6, FILE = '/CFS/MM/GAUSS/SOL')

OPEN(UNIT -- 7, FILE = '/USR/MM/GAUSS/MAT')

Read data from conventional files

READ(7,2100) ((A(I,J), J = 1,N), I = 1,N))

READ(7,2100) (B(I), I = 1,N)

DO 10 I = 1, N

SING(I) = .FALSE.

Perform matrix decomposition

CALL FGAUSD(N,A,IPIVOT, SING, TEMP)

C Test for singularity; perform solution step if matrix is not singular

IF (ANY(SING)) THEN
PRINT 2000

ELSE

CALL FGAUSS(N,A,IPIVOT,B, TEMP)
C Write solution to concurrent file

CWRITE(6, SYSTEM) B
END IF

2000 FORMAT(22H SINGULARITY IN MATRIX)

2100 FORMAT(F8.3)
STOP
END

Figure 1: Program for Gaussian Elimination

71

C

C

4O

C

5O

60

30

200

3OO

SUBROUTINE FG AUSD(N,A,IPIVOT,SING,TEMP)

Distributions are inheriCed from the calling routine

REAL A(N,N) DIST(*)
REAL TEMP(N) DIST(=A.2)
INTEGER IPIVOT(N) DIST(=A.2)

LOGICAL SING(N) DIST(=A.2)

DO 30K = 1, N-1

Find K'th pivot index, store in IPIVOT(K)

IPIVOT(K) = 0
DO 40I= K+I,N

IF (A(I,K) .GT. A(IPIVOT(K),K)) IPIVOT(K) = I
CONTINUE

TEMP(K) = A(IPIVOT(K)' K)

IF (TEMP(K) .EQ. 0.0) GOTO 200

A(IPIVOT(K),K) = A(K,K)

A(K,K) = TEMP(K)

Find scaling factors

TEMP(K) = -1.0 / A(K,K)
DO 50I = K+I, N

A(I,K) = TEMP(K) * A(I,K)

DO 60J = K+I,N

TEMP(J) : A(IPIVOT(K),J)

A(IPIVOT(K),J) = A(K,J)

A(Kfl) = TEMP(J)
DO 60I=K+l,N

A(I,J) = A(I,J) + A(IPIVOT(K), J) * A(I,K)

CONTINUE

CONTINUE

GOTO 300

SING(K) = .TRUE.

IPIVOT(N) = N

RETURN

END

Figure 2: Subroutine for matrix decomposition

72

10

2O

SUBROUTINEFGAUSS(N,A,B,IPIVOT,TEMP)

REAL A(N,N)

REAL B(N)
REAL TEMP(N)
INTEGER IPIVOT(N)

DIST(*)

DIST(=A.2)
DIST(=A.2)

DIST(=A.2)

DO 10K= 1, N-1

TEMP(K) = B(IPIVOT(K))

B(IPIVOT(K)) = B(K)

B(K) = TEMP(K)
DO 10I=K+I,N

B(I) = B(I) + TEMP(K) * A(I,K)
CONTINUE

DO 20 K = N, 1

B(K) = B(K) / A(K,K)

DO 20I= 1, K-1

B(I) = B(I)- B(K) * A(I,K)
CONTINUE

RETURN

END

Figure 3: Subroutine for the solution step of Gaussian Elimination

the major issue being the specification of data distribution. Thus, it is easy to experiment with different

distributions by just changing the declarations and recompiling.

Even though the subroutines inherit the distributions of the arguments, the presumption that the array
A is distributed only in the second dimension is built into the code. This assumption may not be appropriate

if the algorithm is written as a library routine, rather than a subroutine in a user program. By utilizing the

intrinsic distribution query functions and the SELECT DCASE statement, the routines can be transformed
into a version which can accept a wide range of distributions. For example, the distribution of A may

determine the most appropriate algorithm for obtaining the pivot element.

A.2 ADI Iteration

ADI (Alternating Direction Implicit) is a well known and effective method for solving partial differential
equations in two or more dimensions [23]. It is widely used in computational fluid dynamics, and other areas

of computational physics. The name ADI derives from the fact that "implicit" equations, usually tridiagonM

systems, are solved in both the z and y directions at each step. In terms of data structure access, one step of

the algorithm can be described as follows: an operation (a tridiagonal solve here) is performed independently
on each x-line of the array followed by the same operation being performed, again independently, on each

y-line of the array.
The code for such a step of the ADI algorithm is shown in Figure 4. Here, the arrays U and F, the

current solution and the right hand sides respectively, are distributed such that the columns are blocked over

the implicit one-dimensional array of processors, SP.

73

PARAMETER(NX= 100)

PARAMETER(NY = 100)

REAL U(NX, NY) DIST (:,BLOCK)

REAL F(NX, NY) DIST (:,BLOCK)

REAL V(NX, NY) DYNAMIC, RANGE((:,BLOCK), (BLOCK, :)), DIST (:,BLOCK)

CALL RESID(V, U, F, NX, NY)

C Sweep over x-lines
DO 10J = I, NY

CALL TRIDIAG(V(:, J), NX)

10 CONTINUE

C

2O

3O

DISTRIBUTE V :: (BLOCK, :)

Sweep over y-lines

DO 20I= I, NX

CALL TRIDIAG(V(I, :), NY)
CONTINUE

DO 30 J 1, NY

DO 30I= 1, NX

J) = v(i, J)
CONTINUE

r .

Figure 4: An ADI iteration

=-

E

i

=

=

=

74

ThearrayV, used as a workarray, is declared to be dynamic with the range attribute specifying that the only

distributions allowed are blocking by rows or columns. The first loop ranges over the columns (representing

the x-lines), calling a subroutine TRIDIAG for each column of V while the second loop ranges over the rows

(representing the y-lines). Here, the subroutine TRIDIAG is given a right hand side and overwrites it with
the solution of a constant coefficient tridiagonal system.

In this version of the algorithm, the array V is dynamically redistributed in between the two loops; in

the first loop it is blocked by columns while in the second it is blocked by rows. Thus, in each loop, we can
employ a sequential tridiagonal since neither x-lines in the first loop nor the y-lines in the second loop cross

processor boundaries. Note that the redistribution of th e array is a "transpose" of the array with respect to
the set of processors and requires each processor to exchange data with each of the other processors. Hence,

all the communication in this version of the algorithm is contained in the redistribution while the tridiagonal

solves run without interprocessor communication. The final assignment of the array V to the array U also

induces communication similar to the "transpose" above since U ad V are distributed in different dimensions.

The version of ADI here is only one of a number of ways of encoding the algorithm. For example, one

could leave the array V in place and employ a parallel tridiagonal solver in the second loop. This would shift

the interprocessor communication in the algorithm from the redistribution (and the final assignment) to the
tridiagonal solvers. Similarly, the arrays could be blocked in both the dimensions and a parallel tridiagonal

solver used for both the x- and the y-lines.
All versions of this algorithm are equally easy to express in Vienna Fortran. Moreover, it is a trivial

matter to change the distributions, or to substitute the calls to the sequential tridiagonal solver used here

by calls to a parallel tridiagonal solver. In marked contrast, such changes will typically induce weeks of

reprogramming in a message-passing language.

A.3 Sweep over an Unstructured Mesh

Several scientific codes are characterized by the fact that information necessary for effective mapping of

the data structures is not available until runtime. Examples of such codes include but are not limited to,

particle-in-cell methods, sparse linear algebra, and PDE solvers using unstructured and/or adaptive meshes.
In this section, we consider a "relaxation" operation on an unstructured mesh. As shown in Figure 5,

such meshes are generally represented using adjacency lists which denote the neighbors of a particular node
of the mesh. Thus, NNBR(i) represents the number of neighbors of node i while NBR(i, j) represents the

jth neighbor of node i. The relaxation operation, as shown here, consists of determining a new value of the

array U at each point in the grid, based on some weighted average of its neighbors.
In the code, the primary array NBR is explicitly distributed via the INDIRECT distribution mecha-

nism. The distribution of NBR is determined by the mapping array MAP, which is defined in the routine

PARTITION based on the structure of the mesh. The secondary arrays, NNBR, U, UTMP, and COEF, are

automatically distributed according on the alignments specified in the respective declarations. The notransfer

attribute specifies that the values of the array UTMP need not be moved when the array is redistributed.
The rest of the code depicts K sweeps over the unstructured mesh. The important point here is that to

access the values at neighboring nodes, the elements of the vector UTMP are indexed by the array NBR.

Given that NBR is distribuLed at runtime, the compiler does not have enough information at compile-time
to determine which of the references are non-local. In such situations, runtime techniques as developed in

[17, 18, 36] are needed to generate and exploit the communication pattern.

75

C

C

C

C

2O

C

4O

30
10

PARAMETER(NNODE - 1000)

PARAMETER(MAXNBR = 12)

INTEGER NBR(NNODE, MAXNBR) DYNAMIC, DIST(BLOCK, :)

INTEGER NNBR(NNODE) DYNAMIC, CONNECT (=NBR.1)

REAL U(NNODE) DYNAMIC, CONNECT (=NBR.I)

REAL UTMP(NNODE) DYNAMIC, CONNECT (=NBR.I)

REAL COEF(NNODE, MAXNBR) DYNAMIC, CONNECT (=NBR)

INTEGER MAP(NNODE) DIST(BLOCK)

Define the array MAP to partition the mesh based on its structure.

CALL PARTITION(NBR, NNBR, MAP)

RedistribuLe the array NBR based on the array MAP. Arrays NNBR, U, UTMP
and COEF are automatically redistributed. The values of UTMP are not transferred.

DISTRIBUTE NBR :: (INDIRECT(MAP),:)' NOTRANSFER(UTMP)

DO 10 ITER = 1, K

Copy the values of U into UTMP
DO 20 I = 1, NNODE

UTMP(I) = U(I)
CONTINUE

Sweep over the mesh.
DO 30 I = 1, NNODE

T=0:0

DO 40 J = 1, NBR(I)

T = T + COEF(I, J) * UTMP(NBR(I, J))
CONTINUE

U(I) = U(I) + T

CONTINUE

CONTINUE

Figure 5: Relaxation sweep over an unstructured mesh

76

B Intrinsic Functions

This section describes the intrinsic functions (including intrinsic distribution functions) of Vienna Fortran.

We will use the following notation:

• alloc-array

• array
• dim
• element

• int-array
• len

• mask

• processor

• query

allocatable array

arbitrary array

integer constant
data element (scalar or array element)

integer array with index domain [1 : N] for some N.

integer constant >_ 1

logical array

processor element or processor index (relating to $P)

query without name tag in the sense of Section 3.8.3

B.1 ALL

Form: ALL(mask)

Result type: logical
Result value: Determines whether all values are true in mask.

B.2 ALLOCATED

Form: ALLOCATED(alloc-array)

Result type: logical
Result value: Determines whether the allocation status of alloc-array is allocated.

B.3 ANY

Form: ANY(mask)

Result type: logical
Result value: Determines whether any value is true in mask.

B.4 BLOCK

Form: BLOCK

Result type: 1-1 distribution function
Result: Creates a block distribution. See Section 3.4.3.

B.5 B_BLOCK

Form: B_BLOCK(int-array)

Result type: 1-1 distribution function

Result: Creates a general block distribution. Let

• [L : U] the index domain associated with the array (dimension) to be distributed.

77

• M the number of processors in the processor array (dimension), which is the target of the distribution.
Then N>M- 1.

• The array (dimension) is partitioned into M contiguous blocks. For all i, 1 < i < M, int-array(i)
specifies tile upper bound of Block i. The index ranges associated with the blocks are given as follows:

Block 1: [L : int-array(1)] Block i, 1 < i < M: [int-array(i - 1) + 1 : int-array(i)] Block M:
[int-array(M - 1) + 1 : U] The values of int-array must be defined in such a way that each block is

associated with a nonempty index range.

B.6 CYCLIC

Form: CYCLIC(lien])

Result type: 1-1 distribution function
Default: The default value for len is 1

Result: Depending on whether or not len = 1, a cyclic or a block cyclic distribution is generated.
Section 3.4.3.

See

B.7 CYCLIC_LEN

Form: CYCLIC_LEN(array, dim)

Result type: integer

Result value: The distribution type associated with the distribution extraction (= array.dim) must be
CYCLIC(K). The function determines the block length, K.

B.8 DISTRIBUTED

Form: DISTRIB UTED(array)

Result type: logical

Result value: Determines whether the argument array has a defined distribution.

B.9 DYNAMIC

Form: D YNA MIC(array)

Result type: logical

Result value: Determines whether the argument array is a dynamically distributed array.

B.10 IDT

Form: IDT(array[, dim], query)

Result type: logical

Result: Let t denote the type associated with the distribution extraction (= A.dim) or (= A), depending on
whether or not dim is specified (see Section 3.4.4). The reference to IDT yields true iff t and query match
according to the rules specified in Section 3.8.3.

E

Z

78

z

B.11 IDTA

Form: IDTA(arrayl [, dim1], array2[, dirn2])

Result type: logical
Result: The effect of ID TA (a Fray1 [, dim1], array2 [, dim2]) is equivalent to the effect of ID T(arrayl [, dim1], (=

array2 [.dim2])).

B.12 INDIRECT

Form: INDIRECT(array)

Result type: distribution function
Result: Creates an indirect distribution. See Section 3.4.3.

B.13 LBOUND

Form: LBO UND(array, dim[,processor])

Result type: integer
Result value:

• If processor is not specified, then the function returns the lower bound of array in dimension dim.

• If processor is specified, then the function return the smallest i such that array(...,i,...), where i

occurs in position dim, is owned by processor.

B.14 OWNED

Form: O WNED(element,processor)

Result type: logical
Result value: Determines whether element is owned by processor.

B.15 OWNER

Form: OWNER(element)

Result type: integer
Result value: Determines i such that $P(i) owns element.

dependent index is returned.

If i is not uniquely determined, a system-

B.16 SIZE

Form: SIZE(array[, dim][,processor])

Result type: integer
Default: If dim is specified, then the operand of the function is the corresponding dimension of array. If

dim is not specified, then the operand is the whole array.
Result value:

• If processor is not specified, then the function returns the number of elements in the operand.

79

• If processor is specified, then the function returns the number of elements of the operand owned by

processor.

B.17 S_BLOCK

Form: S_BL 0 CK(iut- array)

Result type: 1-1 distribution function

Result: Creates a general block distribution. Let

[L : U] the index domain associated with the array (dimension) to be distributed.

M the number of processors in the processor array (dimension), which is the target of the distribution.

Then N>M- 1.

The array (dimension) is partitioned into M contiguous blocks. For all i, 1 < i < M, int-array(i)
specifies the size of Block i. The index ranges associated with the blocks are given as follows: Block 1:

[L: L + int-array(1) - 1] Block 2: [L + int-array(1) : L + ini-array(1) + ini-array(2) - 1] ...Block
M: [.,. :V]

The values of int-array must be specified in such a way that all index ranges are nonempty.

B.18

Form:

UBOUND

UB 0 U N D (a tray[, dim][, process or]

Result type: integer
Result value:

• If processor is not specified, then the function returns the upper bound of array in dimension dim.

• If processor is specified, then the function return the largest i such that array(..., i,...), where i occurs
in position dim, is owned by processor.

B.19 SMY_PROC

Form: SMY_PROC

Result type: integer

Result value: Determines the index of the executing processor in $P.

B.20 $NP

Form: SNP

Result type: integer

Result value: Determines the number of processors executing the program.

8O

C Syntax

C.1 Syntax Metalanguage

The syntax of the language extensions is specified in a variation of Backus-Naur form (BNF). We use the

following conventions:

1. Nonterminal symbols are written as lower-case words (often hyphenated and abbreviated). Nonterminal

symbols of the FORTRAN 77 standard are written in italic and have the same meaning as in the standard.

2. Keywords are written in boldface, for example REAL.

3. Strings of terminal symbols that are not keywords are enclosed in quotes: for example "("

4. The following syntactic meta symbols are used ("xyz" stands for any legal syntactic class phrase):

• _ introduces a syntactic class definition

• I introduces a syntactic class alternative

• [] encloses an optional item

" 0 encloses an item which specifies a set of alternatives

• [xyz]... expresses repetition of xyz (0 or more times)

• xyz ... expresses repetition of xyz (1 or more times)

5. In order to minimize the number of syntax rules and to convey appropriate context information, the

following rules are assumed:

• xyz-list ---* xyz ["," xyz]...

• xyz-name ---* name

. integer-xyz --* xyz

C.2 Basic Elements

1. assertion _ ASSERT "("expression")"

2. array-section _ array_name ["("section-subscrlpt-llst")"]

3. section-subscript _ subscript I subscript-triplet

4. subscript _ integer_ezpr

5. subscript-triplet ---, [subscript] ":" [subscript] [":" stride]

6. stride --+ integer_ezpr

7. data-reference ---* array_element_name I array-section

8. generalized-array-declarator --* array-declara$or I assumed-shape-array-declarator

9. assumed-shape-array-declarator _ array_name "(" assumed-shape-spec-list ")"

10. assumed-shape-spec _ [dim_bound_expr] ":"

11. declaration-annotation _ actual-array-annotation I dummy-array-annotation

12. actual-array-annotation ---* static-array-annotation t dynamic-array-annotation

13. extension-executable-statement ---* distribute-statement I allocate-statement I deallocate-statement I

forall-loop] dcase-construct I concurrent-io-statement

81

C.3 Processor Declarations

1. processor-declaration--*primary-processor-structure[secondary-processor-structures]

2. primary-processor-structure---*PROCESSORSgeneralized-array-declarator

3. secondary-processor-structures---,RESHAPEgeneralized-array-declarator-list

C.4 Processor References

1. processor-reference_ processor-element-name]processor-section["(/"dimension-permutation"/)"]

2. processor-element-name_ array_element-name

3. processor-section ---, array-section

4. dimension-permutation _ int_constant_expr'-list

C.5 Distribution Expressions

1. distribution-expression ---* simple-distribution-expression I composite-distribution-expression

2. simple-distribution-expression _ distribution-function-reference] distribution-extraction I distribution-
type-name

distribution-function-reference ---* function_reference

distribution-extraction --_ "=" array-or-dimension

array-or-dimension ---, array_name I array-dimension

array-dimension ---* array_name dimension-qualifier

dimension-qualifier ---, "." int_constanl_ezpr

distribution-type-defiLlition ---* DTYPE "(" dtype-pair-list ")"

dtype-pair _ name "= ("distribution-expression")"

composite-distribution-expression ---, dimensional-expression-list

dimensional-expression --_ simple-distribution-expression I ":"

Alignment Specifications

alignment-specification ---* ALIGN aspec

aspec ---* alignment-expression I functional-alignment

alignment-expression --_ target-array-identification "("bound-variable-list")" WITH source-array-
reference

4. target-array-identification ---* array_name] "$"

5. bound-variable ---, variable_name I ":"

6. source-array-reference ---* data-reference

7. functional-alignment ---* "(" alignment-function-reference ")" WITH source-array-section

8. alignment-function-reference _ function_reference

,

4.

5.

6.

7.

8.

9.

10.

11.

C.6

1.

2.

3.

=

@

=

m

82

C.7

C.8

i.

2.

3.

4.

5.

6.

7.

8.

- 9,

C.9

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Static Array Annotations

1. static-array-annotation ---* [distribution-specification[alignment-specification]

2. distribution-specification ---* DIST dspec

3. dspec ---* "('distribution-expression")" [TO processor-reference] I TO processor-reference

Dynamically Distributed Arrays

dynamic-array-annotation ---* DYNAMIC (primary-array-annotation I secondary-array-annotation)

primary-array-annotation _ ["," distribution-range] ["," initial-distribution]

distribution-range ---* RANGE "("dspec-list")"

initial-distribution _ distribution-specification I alignment-specification

secondary-array-annotation --* "," CONNECT connection

connection ---* distribution-extraction [aspec

distribute-statement ---, DISTRIBUTE distribution-group

distribution-group _ array_name-list "::" [(dspec I alignment-specification)] [notransfer-attribute]

notransfer-attribute ---, NOTRANSFER["(" array_name-list")"]

Control Constructs

control-construct --* dcase-construct I if-construct

dcase-construct ---* select-dcase-statement condition-action-pair.., end-select-statement

select-dcase-statement --_ SELEC T DCASE "(" array_name-list ")"

condition-action-pair ---* CASE condition action

condition ---* query-list I DEFAULT

query ---* [name-tag] (dspec I "*")

name-tag ---+ array_name "'"

action ---* [ezeculable_statement]...

end-select-statement --_ END SELECT

if-construct ---* logical_if_statement I block_if_stalement I else_if_statement

83

C.10 Allocatable Arrays

1. allocatable-array-declarator--_array_name "(" deferred-shape-spec-list ")" allocatable-attribute

2. deferred-shape-spec ---*

3. allocatable-attribute ---* ALLOCATABLE

4. allocatable-array-annotation _ actual-array-annotation

5. allocate-statement _ ALLOCATE"("allocation-list")"

6. allocation ---* array_declarator

7. deallocate-statement ---* DEALLOCATE "(" array_name-list")"

C.11 Procedures

1. dummy-array-annotation _ actual-array-annotation [dummy-annotation-attribute]... I
inherit-annotation

2. inherit-annotation ---* DIST "(" "*" ")" ["," distribution-range]

3. dummy-annotation-attribute ---* restore-attribute I nocopy-attribute I notransfer-attribute

4. restore-attribute ---* RESTORE

5. nocopy-attribute ---* NOCOPY

C.12 FORALL Loops

1. forall-loop --* forall-statement private-var-decls forall-block end-forall

2. forall-statement ---, label-forall-statement] nonlabel-forall-statement

3. label-forall-statement ---, [forall-construct-name ":"] FORALL label forall-control

4. nonlabel-forall-statement ---* [forall-construct-name ":"] FORALL forall-control

5. forall-control ---, (control-variable I "(" control-variable-list ")") [on-clause]

6. control-variable ---* variable_name "=" integer_expr "," integer_ezpr ["," integer_expr]

7. on-clause --* ON processor-element-name

8. processor-reference ---, OWNER "(" array_element_name ")" I processor-element-name

9. private-var-decls ---* dimension_statement [type_statement

10. forall-block _ allocate-statement I deallocate-statement I reduction-statement I executable_statement

11. end-forall ---, end-forall-statement I continue_statement

12. end-forall-statement _ END FORALL [forall-construct-name]

13. reduction-statement ---* REDUCE "(" reduction-op "," variable "," expression ["," order] ")"

14. reduction-op---* SUM I MULT I MAX I MIN I function_name

15. order---* LEFT I RIGHT I TREE

84

C.13 Specification of Distribution Functions

1. dfunction-statement _ DFUNCTION dfunction-name ["("[dummy-argument-list[")"[

2. dummy-argument --* variable_name [array_name [procedure_name

3. _arge_-array-specificat_on ---* TARGET genera|ized-array-dec|arator

4. processor-specification ---* [PROCS] generalized-array-declarator

5. distribution-mapping-statement --* distribution-index-mapping] distribution-dimension-mapping

6. distribution-index-mapping ---* data-reference DIST ["("distribution-expression")"[

TO processor-reference

7. distribution-dimension-mapping --* array-dimension DIST ["("distribution-function-reference")"[

TO processor-dimension

8. processor-dimension --_ array-dimension

9. end-dfunction-statement ---* END DFUNCTION [dfunction-name]

C.14 Specification of Alignment Functions

1. afunction-statement _ AFUNCTION afunction-name ["("[dummy-argument-list[")"[

2. source-array-specification ---+ SOURCE generalized-array-declarator

3. alignment-mapping-statement ---*data-reference ALIGN ["('alignment-function-reference")"[WITH
data-reference

4. end-afunction-statement _ END AFUNCTION [afunction-name]

C.15 Concurrent Input/Output Statements

1. concurrent-io-statement ---* copen-statement [cclose-statement] cwrite-statement] cread-statement [

cbackarray-statement [cskip-statement [crewind-statement

2. copen-statement --* COPEN "(" copenitem-list ")"

3. copenitem _ [UNIT "="] external-unit-identifier [IOSTAT "-" integer_variable [

ERR "=" label[FILE "----" (name [character.string)] STATUS "----" ('OLD'] 'NEW') [

FORM "--" (' FORMATTED' I ' UNFORMATTED ')

4. cclose-statement _ CCLOSE "(" ccloseitem-list ")"

5. ccloseitem --_ [UNIT "="] external-unit-identifier] IOSTAT "=" integer_variable]

ERR "=" label I STATUS "=" ('KEEP'] 'DELETE')

6. cwrite-statement _ CWRITE "(" cwriteitem-list ")" array_name-list

7. cwriteitem --* [UNIT "="] external-unit-identifier I [EXTDIST "--"] SYSTEM I

IOSTAT "=" integer_variable] ERR "=" label

8. external-unit-identifier _ inleger_expr

9. cread-statement -* CREAD "(" creaditem-list ")" array_name-list

85

10.creaditem---,[UNIT "="] external-unit-identifier [END "=" label] IOSTAT "=" integer_variable
I ERR "=" label

11. cbackarray-statement _ CBACKARtLAY "(" cbackarrayarrayitem-list ")"

12. cbackarrayitem ---* [UNIT "="] external-unit-identifier I IOSTAT "=" integer_variable I
ERR "=" label

13. cskip-statement _ CSKIP "(" cskipitem-list ")"

i4. cskipitem ---, [UNIT "="] external-unit-identifier I ([ARRN "="] ("*"] inleger_expression) I
IOSTAT "=" integer_variable I ERR "=" label)

15. crewind-statement ---, CREWIND "(" crevitem-list ")"

16. revlist-item ---, [UNIT "="] external-unit-identifier I IOSTAT "=" integer_variable I
ERR "--" label

86

REPORT DOCUMENTATION PAGE i
Form Approved

OMB No. 0704-0188

PuOlic reporting burden for this collecl_on of Informat=on is estimated to a_erage I hOur _,er resDonse, _neJuding the time for reviewing instructions, _earchlng exist=rig data sources,

gathering and mamta(oing the data needed, and completing and re g the <:ol(ect)onof mformatmon r)end (om rnentsr__ardlngrthis.burde_e)]l, mateo _ =anYother aEr)o_,ofth _
collet'tlon of _nformat)on ,n¢luding suggest ons for reducing this ourden to Wasnlngton _eaaclua_er$)erv_ces. ulrec_otate Tot ,n.u m_,lu,, U_C.dL,U,,. G,,u _=_.u,,=,, •, _ ,=,,=._,,
Oows H,ghway, Suite 1'20_I,Arlington. VA 22,!02-4302, and to the Office of Management and Budget, Paporwork Reduction Project (0704-0188). Washington, OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1992

4. TITLE AND SUBTITLE

VIENNA FORTRAN -- A LANGUAGE SPECIFICATION

VERSION I. 1

6. AUTHOR(S)

Hans Zima, Peter Brezany, Barbara Chapman,

Piyush Mehrotra, and Andreas Schwald

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mall Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. REPORT TYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NASI-18605

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Interim Report

No. 21

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-189629

ICASE Interim Report 21

It.SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclasslfled - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200words)

This document presents the syntax and semantics of Vienna Fortran, a machlne-inde-

pendent language extension to FORTRAN 77, which allows the user tow rite programs

for distrlbuted-memory systems using global addresses. Vienna Fortran includes high-

level features for specifying virtual processor structures, distributing data across

sets of processors, dynamically modifying distributions, and formulating explicitly

parallel loops. The language is based upon the Single-Program-Multlple-Data (SPMD)

paradigm, which exploits the parallelism inherent in many scientific codes. A sub-

stantial subset of the language features has already been implemented.

14, SUBJECTTERMS

distributed-memorymultiprocessor systems; numerical computation;

data parallel algorithms; data distribution; alignment;

parallel loops; concurrent input/output
17. SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITYCLASSIFICATION

OF REPORT OFTHIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-2B0-5500

15. NUMBER OF PAGES

9O
16. PRICE CODE

A05

20. LIMITATION OF ABSTRACT

;tandard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18
298-102

NASA-Langley, 1992

